Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658535

ABSTRACT

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Subject(s)
Cicatrix , Collagen , Fibroblasts , Wound Healing , Zebrafish , Humans , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Collagen/metabolism , Wound Healing/drug effects , Cicatrix/metabolism , Cicatrix/pathology , Cicatrix/drug therapy , Skin/metabolism , Skin/pathology , Skin/drug effects , Fibrosis , Peptides/pharmacology , Peptides/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects
2.
iScience ; 27(4): 109489, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38558933

ABSTRACT

The Bacopa monnieri plant contains phytochemicals that have been used extensively in traditional medicine to treat various diseases. More recently it has been shown to accelerate wound healing, though its mechanism of action is largely unknown. Here we investigated the cellular pathways activated by a methanol extract of Bacopa monnieri in human dermal fibroblasts, which play many critical roles in the wound healing program. Gene expression analysis revealed that the Bacopa monnieri extract can modulate multiple processes involved in the wound healing program such as migration, proliferation, and angiogenesis. We discovered that the extract can increase migration of fibroblasts via modulating the size and number of focal adhesions. Bacopa monnieri-mediated changes in focal adhesions are dependent on α5ß1 integrin activation and subsequent phosphorylation of focal adhesion kinase (FAK). Altogether our results suggest that Bacopa monnieri extract could enhance the wound healing rate via modulating fibroblast migration into the wound bed.

3.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Article in English | MEDLINE | ID: mdl-36528128

ABSTRACT

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Subject(s)
Fibroblasts , Scleroderma, Systemic , Mice , Animals , Humans , Fibroblasts/metabolism , Scleroderma, Systemic/pathology , Skin/pathology , Extracellular Matrix Proteins/metabolism , Fibrosis , Mice, Transgenic , Disease Models, Animal , Neoplasm Proteins/metabolism
4.
Cell Rep ; 40(12): 111390, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130502

ABSTRACT

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial Cells/metabolism , Extracellular Matrix Proteins , Humans , Integrins/metabolism , Neoplasm Proteins , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Skin Neoplasms/pathology , Snail Family Transcription Factors/metabolism
5.
Bio Protoc ; 11(17): e4148, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34604453

ABSTRACT

The skin plays an important role in protecting the body from pathogens and chemicals in the external environment. Upon injury, a healing program is rapidly initiated and involves extensive intercellular communication to restore tissue homeostasis. The deregulation of this crosstalk can lead to abnormal healing processes and is the foundation of many skin diseases. A relatively overlooked cell type that nevertheless plays critical roles in skin homeostasis, wound repair, and disease is the dendritic epidermal T cells (DETCs), which are also called γδT-cells. Given their varied roles in both physiological and pathological scenarios, interest in the regulation and function of DETCs has substantially increased. Moreover, their ability to regulate other immune cells has garnered substantial attention for their potential role as immunomodulators and in immunotherapies. In this article, we describe a protocol to isolate and culture DETCs and analyse them in vivo within the skin. These approaches will facilitate the investigation of their crosstalk with other cutaneous cells and the mechanisms by which they influence the status of the skin. Graphic abstract: Overall workflow to analyse DETCs in vitro and in vivo.

6.
Bio Protoc ; 8(18): e3021, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-34395809

ABSTRACT

The collagen contraction assay is an in vitro, three-dimensional method to determine the factor(s) affecting the contractile behavior of activated cells such as fibroblasts in either physiological or pathological scenarios. The collagen lattices/hydrogels are seeded with fibroblasts to mimic the interactions between these cells and their surrounding extracellular matrix proteins in the connective tissue. This method is an important platform to assess components as potential therapeutic targets to prevent pathologies such as fibrosis, which are manifestations of hyperactivated fibroblasts. We have described a basic version of this collagen contraction assay, which is amenable to customization using different cell types under diverse experimental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...