Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale ; 12(45): 23061-23068, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33179680

ABSTRACT

In contrast to previous work, the synergy between panchromatic absorption and molecular singlet fission (SF) is exploited to optimize solar energy conversion through evaluation of the distance dependence of intramolecular Förster Resonance Energy Transfer (i-FRET) in a series of subphthalocyanines (SubPcs) linked to pentacene dimers (Pnc2s). To provide control over i-FRET, the molecular spacer rather than the energy donating SubPc is tailored in the corresponding SubPc-Pnc2 conjugates in terms of length (i.e., the number of aryl units) and flexibility (i.e., presence or absence of a CH2 group). AM1-CIS calculations support the experiments, which underline the importance of the molecular spacer to impact not only the i-FRET dynamics, but also the dynamics of intramolecular singlet fission (i-SF). For example, an additional phenyl group slows down both i-FRET and i-SF by a factor of ∼3.8 and ∼1.6, respectively, by a quinone-like conjugation pattern that affords a pentacene acceptor orbital that is fairly delocalized over both pentacenes and the bridging phenyl.

2.
Nat Commun ; 11(1): 4797, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32968057

ABSTRACT

The optoelectronic properties of various carbon allotropes and nanomaterials have been well established, while the purely sp-hybridized carbyne remains synthetically inaccessible. Its properties have therefore frequently been extrapolated from those of defined oligomers. Most analyses have, however, focused on the main optical transitions in UV-Vis spectroscopy, neglecting the frequently observed weaker optical bands at significantly lower energies. Here, we report a systematic photophysical analysis as well as computations on two homologous series of oligoynes that allow us to elucidate the nature of these weaker transitions and the intrinsic photophysical properties of oligoynes. Based on these results, we reassess the estimates for both the optical and fundamental gap of carbyne to below 1.6 eV, significantly lower than previously suggested by experimental studies of oligoynes.

3.
Chem Sci ; 10(13): 3854-3863, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-31015927

ABSTRACT

Singlet fission (SF) allows two charges to be generated from the absorption of a single photon and is, therefore, potentially transformative toward improving solar energy conversion. Key to the present study of SF is the design of pentacene dimers featuring a xanthene linker that strictly places two pentacene chromophores in a rigid arrangement and, in turn, enforces efficient, intramolecular π-overlap that mimics interactions typically found in condensed state (e.g., solids, films, etc.). Inter-chromophore communication ensures Davydov splitting, which plays an unprecedented role toward achieving SF in pentacene dimers. Transient absorption measurements document that intramolecular SF evolves upon excitation into the lower Davydov bands to form a correlated triplet pair at cryogenic temperature. At room temperature, the two spin-correlated triplets, one per pentacene moiety within the dimers, are electronically coupled to an excimer state. The presented results are transferable to a broad range of acene morphologies including aggregates, crystals, and films.

4.
J Am Chem Soc ; 141(15): 6191-6203, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30854854

ABSTRACT

We have designed and used four different spacers, denoted A-D, to connect two pentacenes and to probe the impact of intramolecular forces on the modulation of pentacene-pentacene interactions and, in turn, on the key steps in singlet fission (SF), that is, the 1(S1S0)-to-1(T1T1) as well as 1(T1T1)-to-5(T1T1) transitions by means of transient absorption and electron paramagnetic resonance measurements. In terms of the 1(S1S0)-to-1(T1T1) transition, a superexchange mechanism, that is, coupling to a higher-lying CT state to generate a virtual intermediate, enables rapid SF in A-D. Sizeable electronic coupling in A and B opens, on one hand, an additional pathway, that is, the population of a real intermediate, and changes, on the other hand, the mechanism to that of hopping. In turn, A and B feature much higher 1(T1T1) quantum yields than C and D, with a maximum value of 162% for A. In terms of the 1(T1T1)-to-5(T1T1) transition, the sizable electronic coupling in A and B is counterproductive, and C and D give rise to higher 5(T1T1)-to-(T1 + T1) quantum yields than A and B, with a maximum value of 85% for D.

5.
Angew Chem Int Ed Engl ; 57(50): 16291-16295, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30230158

ABSTRACT

The synergy of panchromatic absorption throughout most of the visible range of the solar spectrum and intramolecular singlet fission (SF) has been realized in a series of conjugates featuring different light-harvesting subphthalocyanines (SubPcs) and an energy accepting pentacene dimer (Pnc2 ). At the focal point was a modular SubPc approach, which was based on decorating the SubPc core with different peripheral substituents to tailor and fine-tune their optical properties. Transient absorption measurements assisted in corroborating that the SubPcs act as energy-transfer antennas by means of unidirectional and quantitative intramolecular Förster resonance energy transfer (FRET) to the Pnc2 , where an intramolecular SF affords triplet quantum yields reaching unity.

6.
Angew Chem Int Ed Engl ; 57(33): 10742-10747, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-29863297

ABSTRACT

A novel pentacene dimer (P2) and a structurally analogous monomer (P1) were synthesized for use in n-type dye-sensitized solar cells. In P2, the triplet excited states formed by the rapid, spin-allowed process singlet fission were expected to enable carrier multiplication in comparison to the slow, spin-forbidden intersystem crossing seen in P1. A meta-positioning of the two pentacenes and the carboxylate anchor were chosen in P2 to balance the intramolecular dynamics of singlet fission and electron injection. Electron injection from energetically low-lying triplet excited states of pentacene units necessitated the intrinsic and extrinsic lowering of the Fermi level of the semiconductor. Indium-zinc oxide in the presence of Li+ was found to be the optimum choice for the photoelectrodes. Efficient electron injection from the triplet excited states of P1 and P2 was found, with a carrier multiplication of nearly 130 %.

7.
J Am Chem Soc ; 139(40): 14017-14020, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28915047

ABSTRACT

In this proof of concept study, we show that intramolecular singlet fission (iSF) can be initiated from a singlet excited state accessed by two-photon absorption, rather than through a traditional route of direct one-photon excitation (OPE). Thus, iSF in pentacene dimers 2 and 3 is enabled through NIR irradiation at 775 nm, a wavelength where neither dimer exhibits linear absorption of light. The adamantyl and meta-phenylene spacers 2 and 3, respectively, are designed to feature superimposable geometries, which establishes that the electronic coupling between the two pentacenes is the significant structural feature that dictates iSF efficiency.

8.
Nat Commun ; 8: 15171, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516916

ABSTRACT

When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron-hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures.

9.
Nanoscale ; 8(19): 10113-23, 2016 May 21.
Article in English | MEDLINE | ID: mdl-27122097

ABSTRACT

We show unambiguous and compelling evidence by means of pump-probe experiments, which are complemented by calculations using ab initio multireference perturbation theory, for intramolecular singlet fission (SF) within two synthetically tailored pentacene dimers with cross-conjugation, namely XC1 and XC2. The two pentacene dimers differ in terms of electronic interactions as evidenced by perturbation of the ground state absorption spectra stemming from stronger through-bond contributions in XC1 as confirmed by theory. Multiwavelength analysis, on one hand, and global analysis, on the other hand, confirm that the rapid singlet excited state decay and triplet excited state growth relate to SF. SF rate constants and quantum yields increase with solvent polarity. For example, XC2 reveals triplet quantum yields and rate constants as high as 162 ± 10% and (0.7 ± 0.1) × 10(12) s(-1), respectively, in room temperature solutions.

10.
Proc Natl Acad Sci U S A ; 112(17): 5325-30, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25858954

ABSTRACT

Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.

11.
Chem Sci ; 6(10): 5571-5577, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-29861894

ABSTRACT

Unsymmetrical subphthalocyanine fused dimers have been prepared from appropriate ortho-dinitrile SubPc precursors. In particular, either electron-donating or electron-accepting substituents have been introduced on each SubPc constituent unit, resulting in unprecedented push-pull π-extended curved aromatic macrocycles. From fluorescence experiments in solvents of different polarity we conclude a dual fluorescence, namely a delocalized singlet excited state (1.73 eV) and a polarized charge transfer state (<1.7 eV). Pump probe experiments corroborate the dual nature of the fluorescence. On one hand, the delocalized singlet excited state gives rise to a several nanosecond lasting intersystem crossing yielding the corresponding triplet excited state. On the other hand, the polarized charge transfer state deactivates within a few picosesonds. Visualization of the charge transfer state was accomplished by means of molecular modeling with a slight polarization of the HOMO towards the electron donor and of the LUMO towards the electron acceptor.

12.
J Am Chem Soc ; 137(2): 857-63, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25478639

ABSTRACT

Understanding the fundamental spin dynamics of photoexcited pentacene derivatives is important in order to maximize their potential for optoelectronic applications. Herein, we report on the synthesis of two pentacene derivatives that are functionalized with the [(2,2,6,6-tetramethylpiperidin-1-yl)oxy] (TEMPO) stable free radical. The presence of TEMPO does not quench the pentacene singlet excited state, but does quench the photoexcited triplet excited state as a function of TEMPO-to-pentacene distance. Time-resolved electron paramagnetic resonance experiments confirm that triplet quenching is accompanied by electron spin polarization transfer from the pentacene excited state to the TEMPO doublet state in the weak coupling regime.


Subject(s)
Cyclic N-Oxides/chemistry , Magnetic Phenomena , Naphthacenes/chemistry , Photochemical Processes , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Models, Molecular , Molecular Conformation , Naphthacenes/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...