Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hosp Infect ; 98(2): 134-140, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28736269

ABSTRACT

BACKGROUND: As antimicrobial resistance continues to increase, revisiting old antimicrobial agents, modified to enhance efficacy and safety, becomes important. Iodine has been widely used for more than 150 years as a wound and skin disinfectant; it is an effective broad range bactericide and does not promote the development of resistant strains. The most important iodine-based agent is povidone-iodine (PVP-I) which provides excellent antibacterial activity. However, its safety profile has been questioned. AIM: To evaluate the in-vitro antibacterial efficacy and kinetic properties of a novel iodine-based compound, iodine lithium alpha-dextrin (ILαD), against Staphylococcus aureus, and compare the in-vitro cytotoxicity profiles of ILαD and PVP-I. METHODS: A minimum inhibitory concentration (MIC) microbroth dilution method was performed against 12 meticillin-resistant (MRSA) and eight meticillin-susceptible (MSSA) S. aureus clinical isolates using ILαD and PVP-I. Time-kill and post-antibiotic effect studies of ILαD provided rate-of-kill information. MTT cytotoxicity assays were performed using three cell lines, treated with MIC doses of ILαD and PVP-I. FINDINGS: The MIC values of ILαD and PVP-I against the MRSA strains were 125 mg/L and 31.25 mg/L, respectively. Time-kill and post-antibiotic effect studies of ILαD revealed a log10 reduction factor of 3 within 8 h of exposure at a 2 × MIC dose; the post-antibiotic effect was calculated at 5±0.3h. Cell viability was affected slightly at the MIC dose of ILαD, while the MIC dose of PVP-I exerted a strong cell growth inhibitory effect of 90-95%. CONCLUSIONS: ILαD could be a promising solution against staphylococcal infections as it is effective, does not promote the development of resistant strains, and in-vitro testing indicates that it may be safer than PVP-I. Further studies are justified to determine whether ILαD overcomes the clinical limitations of PVP-I.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Dextrins/pharmacology , Lithium/pharmacology , Povidone-Iodine/pharmacology , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/drug effects , Anti-Infective Agents, Local/toxicity , Cell Line , Cell Survival/drug effects , Colony Count, Microbial , Dextrins/toxicity , Humans , Lithium/toxicity , Microbial Sensitivity Tests , Microbial Viability/drug effects , Povidone-Iodine/toxicity , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...