Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 12: 496, 2018.
Article in English | MEDLINE | ID: mdl-30087590

ABSTRACT

The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.

2.
Nat Neurosci ; 20(6): 815-823, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28481350

ABSTRACT

The identification of distinct cell types in the basal ganglia has been critical to our understanding of basal ganglia function and the treatment of neurological disorders. The external globus pallidus (GPe) is a key contributor to motor suppressing pathways in the basal ganglia, yet its neuronal heterogeneity has remained an untapped resource for therapeutic interventions. Here we demonstrate that optogenetic interventions that dissociate the activity of two neuronal populations in the GPe, elevating the activity of parvalbumin (PV)-expressing GPe neurons over that of Lim homeobox 6 (Lhx6)-expressing GPe neurons, restores movement in dopamine-depleted mice and attenuates pathological activity of basal ganglia output neurons for hours beyond stimulation. These results establish the utility of cell-specific interventions in the GPe to target functionally distinct pathways, with the potential to induce long-lasting recovery of movement despite the continued absence of dopamine.


Subject(s)
Dopamine/metabolism , Globus Pallidus/physiology , LIM-Homeodomain Proteins/physiology , Locomotion/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Parvalbumins/physiology , Transcription Factors/physiology , Action Potentials/physiology , Animals , Female , Globus Pallidus/drug effects , LIM-Homeodomain Proteins/biosynthesis , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Neurons/metabolism , Oxidopamine , Parvalbumins/biosynthesis , Transcription Factors/biosynthesis
3.
J Neurosci ; 36(20): 5556-71, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194335

ABSTRACT

UNLABELLED: In the basal ganglia, focused rhythmicity is an important feature of network activity at certain stages of motor processing. In disease, however, the basal ganglia develop amplified rhythmicity. Here, we demonstrate how the cellular architecture and network dynamics of an inhibitory loop in the basal ganglia yield exaggerated synchrony and locking to ß oscillations, specifically in the dopamine-depleted state. A key component of this loop is the pallidostriatal pathway, a well-characterized anatomical projection whose function has long remained obscure. We present a synaptic characterization of this pathway in mice and incorporate these data into a computational model that we use to investigate its influence over striatal activity under simulated healthy and dopamine-depleted conditions. Our model predicts that the pallidostriatal pathway influences striatal output preferentially during periods of synchronized activity within GPe. We show that, under dopamine-depleted conditions, this effect becomes a key component of a positive feedback loop between the GPe and striatum that promotes synchronization and rhythmicity. Our results generate novel predictions about the role of the pallidostriatal pathway in shaping basal ganglia activity in health and disease. SIGNIFICANCE STATEMENT: This work demonstrates that functional connections from the globus pallidus externa (GPe) to striatum are substantially stronger onto fast-spiking interneurons (FSIs) than onto medium spiny neurons. Our circuit model suggests that when GPe spikes are synchronous, this pallidostriatal pathway causes synchronous FSI activity pauses, which allow a transient window of disinhibition for medium spiny neurons. In simulated dopamine-depletion, this GPe-FSI activity is necessary for the emergence of strong synchronization and the amplification and propagation of ß oscillations, which are a hallmark of parkinsonian circuit dysfunction. These results suggest that GPe may play a central role in propagating abnormal circuit activity to striatum, which in turn projects to downstream basal ganglia structures. These findings warrant further exploration of GPe as a target for interventions for Parkinson's disease.


Subject(s)
Beta Rhythm , Dopamine/metabolism , Globus Pallidus/physiology , Models, Neurological , Animals , Dopamine/deficiency , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Feedback, Physiological , Globus Pallidus/cytology , Globus Pallidus/metabolism , Mice
4.
Pathophysiology ; 20(1): 39-48, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22444246

ABSTRACT

The molecular mechanisms underlying TBI pathophysiology and recovery are both complex and varied. Further, the pathology underlying many of the clinical sequelae observed in this population evolve over the acute injury period and encompass the subacute and chronic phases of recovery, supporting the contemporary concept that TBI is a chronic disease rather than a static insult from which limited recovery occurs. TBI related complications can also span from acute care to the very chronic stages of recovery that occur years after the initial trauma. Despite ongoing neurodegeneration, the TBI recovery period is also characterized by a propensity for neuroplasticity and rewiring through multiple mechanisms. This review summarizes key elements of acute pathophysiology, how they link to structural damage and ongoing degeneration, and how this process coincides with a permissive neuroplastic environment. The pathophysiology of selected TBI related complications is also discussed. Each of these concepts is studied through the lens of Rehabilomics, wherein an emphasis is placed on biomarker studies characterizing these pathophysiological mechanisms, and biomarker profiles are assessed in relation to multi-modal outcomes and susceptibility to rehabilitation relevant complications. In reviewing these concepts, implications for future research and theranostic principles for patient care are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...