Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
2.
Parasit Vectors ; 15(1): 280, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35932088

ABSTRACT

BACKGROUND: Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. METHODS: Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. RESULTS: The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. CONCLUSIONS: The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities.


Subject(s)
Aedes , Insecticides , Pyrethrins , Animals , Europe , Genotype , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mutation , Pyrethrins/pharmacology
3.
J Vector Ecol ; 45(1): 135-139, 2020 06.
Article in English | MEDLINE | ID: mdl-32492266

ABSTRACT

Improvement of morphological and molecular identification methods allows the detection of new species of mosquitoes. The mosquito fauna of Croatia currently includes 52 species, belonging to eight genera, including Anopheles (12 species), Aedes (24 species), Coquillettidia (one species), Culex (seven species), Culiseta (six species), Orthopodomyia (one species), and Uranotaenia (one species). This is an updated checklist, which includes five new species found in Croatian mosquito fauna. Two of these are invasive mosquito species, Aedes albopictus (Skuse, 1895) and Aedes japonicus (Theobald 1901), which are spreading across Europe and Croatia. The other three species, Culex laticinctus (Edwards 1913), Culex torrentium (Martini 1925), and Anopheles daciae (Linton, Nicolescu & Harbach 2004) are autochthonous species which haven't been recorded so far. Since there are several more invasive species spreading across Europe, we assume that this is not the final list.


Subject(s)
Introduced Species , Aedes , Animals , Anopheles , Croatia , Culicidae
4.
J Med Entomol ; 51(4): 760-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25118407

ABSTRACT

Seasonal and spatial ovipositional activity of Aedes albopictus (Skuse, 1894) was investigated in Split, South Croatia. During 2009 and 2010, 35 oviposition traps were used in this research. For studying oviposition behavior, mean egg density and Lloyd's mean crowding were used to define the dispersion of eggs into ovitraps and, together with Taylor's power law, to show aggregation degree. To show monthly distribution of egg density, Kriging interpolation was used. Oviposition activity started in April (week 13) and was completed at the beginning December (week 48). Mean egg density reaches the highest values from June to early September (week 25-35). Slope of regressions (mean crowding on mean density and log variance and log mean density) indicated a clumped distribution of eggs. Sampling sites were divided in four groups based on quartiles of median and maximum of mean density. There was no significant difference in measured abiotic factors (temperature, humidity, and rainfall) and measured mean egg density, total amount of eggs, and percentage of positive ovitraps between investigated years, except in mean egg density in some localities.


Subject(s)
Aedes/physiology , Oviposition , Animal Distribution , Animals , Croatia , Female , Ovum , Population Density , Seasons , Temperature
5.
Environ Monit Assess ; 172(1-4): 623-30, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20195750

ABSTRACT

Distribution of fecal microorganisms in water, periphyton, and sediment was studied along the Zrnovnica river (Croatia) over a 1.5-year period. It was found that periphyton was inhabited by the highest number of investigated bacteria, while lower numbers of them were found in sediment and the lowest in surface water of the river. The concentrations of fecal microorganisms in periphyton and partly in sediment were found to be significantly higher in the middle of the river course, near the town of Zrnovnica, while according to the analysis of surface water the highest degree of pollution was reached on its estuary. The results were explained with respect to bacterial-algal associations. Considering the fact that most of the river microorganisms are associated with periphyton and sediment particles and only a small number of them is in the free-living form, microbiological analysis of both periphyton and sediment together with water samples has been suggested when fecal pollution of a river is concerned.


Subject(s)
Environmental Monitoring/methods , Feces/microbiology , Water Microbiology , Croatia , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...