Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140710, 2021 11.
Article in English | MEDLINE | ID: mdl-34358706

ABSTRACT

Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).


Subject(s)
Amino Acid Substitution , Calreticulin/chemistry , Molecular Dynamics Simulation , Calreticulin/genetics , Humans , Protein Domains , Protein Stability
2.
Microb Cell Fact ; 14: 165, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26471510

ABSTRACT

BACKGROUND: Calreticulin (CRT) resides in the endoplasmic reticulum (ER) and functions to chaperone proteins, ensuring proper folding, and intracellular Ca(2+) homeostasis. Emerging evidence shows that CRT is a multifunctional protein with significant roles in physiological and pathological processes with presence both inside and outside of the ER, including the cell surface and extracellular space. These recent findings suggest the possible use of this ER chaperone in development of new therapeutic pharmaceuticals. Our study was focused on human CRT production in two yeast species, Saccharomyces cerevisiae and Pichia pastoris. RESULTS: Expression of a full-length human CRT precursor including its native signal sequence resulted in high-level secretion of mature recombinant protein into the culture medium by both S. cerevisiae and P. pastoris. To ensure the structural and functional quality of the yeast-derived CRTs, we compared yeast-secreted human recombinant CRT with native CRT isolated from human placenta. In ESI-MS (electrospray ionization mass spectrometry), both native and recombinant full-length CRT showed an identical molecular weight (mass) of 46,466 Da and were monomeric by non-denaturing PAGE. Moreover, limited trypsin digestion yielded identical fragment patterns of calcium-binding recombinant and native CRT suggesting that the yeast-derived CRT was correctly folded. Furthermore, both native and recombinant CRT induced cellular proliferation (MTS assay) and migration of human dermal fibroblasts (in vitro wound healing assay) with the same specific activities (peak responses at 1-10 ng/ml) indicating that the functional integrity of yeast-derived CRT was completely preserved. Simple one-step purification of CRT from shake-flask cultures resulted in highly pure recombinant CRT protein with yields reaching 75 % of total secreted protein and with production levels of 60 and 200 mg/l from S. cerevisiae and P. pastoris, respectively. Finally, cultivation of P. pastoris in a bioreactor yielded CRT secretion titer to exceed 1.5 g/l of culture medium. CONCLUSIONS: Yeasts are able to correctly process and secrete large amounts of mature recombinant human CRT equally and fully biologically active as native human CRT. This allows efficient production of high-quality CRT protein in grams per liter scale.


Subject(s)
Calreticulin/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Bioreactors , Calreticulin/chemistry , Calreticulin/genetics , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Molecular Sequence Data , Molecular Weight , Native Polyacrylamide Gel Electrophoresis , Pichia/metabolism , Placenta/metabolism , Plasmids/genetics , Plasmids/metabolism , Pregnancy , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Spectrometry, Mass, Electrospray Ionization
3.
Protein Expr Purif ; 89(2): 131-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23528814

ABSTRACT

Human ERp57 protein is disulfide isomerase, facilitating proper folding of glycoprotein precursors in the concert with ER lectin chaperones calreticulin and calnexin. Growing amount of data also associates ERp57 with many different functions in subcellular locations outside the ER. Analysis of protein functions requires substantial amounts of correctly folded, biologically active protein, and in this study we introduce yeast Saccharomyces cerevisiae as a perfect host for production of human ERp57. Our data suggest that native signal peptide of human ERp57 protein is recognized and correctly processed in the yeast cells, which leads to protein secretion. Secreted recombinant ERp57 protein possesses native amino acid sequence and is biologically active. Moreover, secretion allows simple one-step purification of recombinant ERp57 protein with the yields reaching up to 10mg/L.


Subject(s)
Cloning, Molecular , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Sorting Signals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cloning, Molecular/methods , Gene Expression , Genetic Vectors/genetics , Humans , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...