Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ind Eng Chem Res ; 63(1): 330-344, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38223499

ABSTRACT

Pulverized coal power plants are increasingly participating in aggressive load-following markets, therefore necessitating the design and optimization of primary superheaters for flexible operations. These superheaters play a critical role in maintaining the final steam temperature of the steam turbine, but their high operating temperatures and pressures make them prone to failure. This study focuses on the optimal design of future-generation primary superheaters for a fast load-following operation. To achieve this, a detailed first-principles model of a primary superheater is developed along with submodels for stress and fatigue damage. Two single-objective optimization problems are solved: one for minimizing metal mass as a measure of capital cost and another for minimizing pressure drop on the steam side as a measure of operating cost. Since these objective functions conflict, a multiobjective optimization problem is executed using a weighted metric methodology. Results from these optimization studies show that the base case design can violate stress constraints during the aggressive load-following operation. However, by optimizing the design variables, it is possible to not only satisfy tight stress constraints but also achieve the desired number of allowable cycles and adhere to the steam outlet temperature constraint. In addition, the optimized design reduces either the metal mass or the steam-side pressure drop compared to that of the base case design. Importantly, this approach is not limited to primary superheaters alone but can also be applied to similar high-temperature heat exchangers in other applications.

2.
Annu Rev Chem Biomol Eng ; 5: 301-23, 2014.
Article in English | MEDLINE | ID: mdl-24797817

ABSTRACT

Advanced multiscale modeling and simulation have the potential to dramatically reduce the time and cost to develop new carbon capture technologies. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry, and universities that is developing, demonstrating, and deploying a suite of such tools, including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamics (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk-analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models.


Subject(s)
Carbon Dioxide/isolation & purification , Carbon Sequestration , Computer Simulation , Models, Theoretical , Algorithms , Carbon Dioxide/metabolism , Environmental Monitoring/methods , Hydrodynamics , Kinetics , Thermodynamics
3.
Environ Sci Technol ; 45(10): 4645-51, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21517062

ABSTRACT

Coal-fired power plants are large water consumers. Water consumption in thermoelectric generation is strongly associated with evaporation losses and makeup streams on cooling and contaminant removal systems. Thus, minimization of water consumption requires optimal operating conditions and parameters, while fulfilling the environmental constraints. Several uncertainties affect the operation of the plants, and this work studies those associated with weather. Air conditions (temperature and humidity) were included as uncertain factors for pulverized coal (PC) power plants. Optimization under uncertainty for these large-scale complex processes with black-box models cannot be solved with conventional stochastic programming algorithms because of the large computational expense. Employment of the novel better optimization of nonlinear uncertain systems (BONUS) algorithm, dramatically decreased the computational requirements of the stochastic optimization. Operating conditions including reactor temperatures and pressures; reactant ratios and conditions; and steam flow rates and conditions were calculated to obtain the minimum water consumption under the above-mentioned uncertainties. Reductions of up to 6.3% in water consumption were obtained for the fall season when process variables were set to optimal values. Additionally, the proposed methodology allowed the analysis of other performance parameters like gas emissions and cycle efficiency which were also improved.


Subject(s)
Coal , Conservation of Natural Resources/methods , Power Plants/statistics & numerical data , Water Supply/statistics & numerical data , Power Plants/instrumentation , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...