Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Aging Sci ; 8(3): 259-65, 2015.
Article in English | MEDLINE | ID: mdl-25989799

ABSTRACT

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multi-domain protein that has been found to be mutated in patients with familial and sporadic Parkinson's disease, Alzheimer's disease and Crohn's disease. While the functions of LRRK2 are still largely unclear and mutations in LRRK2 are associated with adverse gain-of-function activities such as increased kinase activity, increased levels of LRRK2 alone are associated with toxicity in neurons. Consequently, exploring mechanisms to decrease levels of LRRK2 using pharmacological inhibitors would be highly advantageous. Previous work has shown that the chaperone heat shock protein 90 (Hsp90) and its co-chaperone Cdc37 interact with and stabilize LRRK2. In the current study, we explore the regulation of LRRK2 by withaferin A (WA), a potent inhibitor of the interaction between Hsp90 and Cdc37. We report that treatment of the microglial cell line N9 with WA causes a decrease in cellular levels of LRRK2 in a dose- and time-dependent manner. We also find that treatment with WA disrupts the interaction between Hsp90, its co-chaperone Cdc37 and LRRK2, which leads to the destabilization and decreased levels of LRRK2. Additionally, treatment with celastrol, which is also an inhibitor of the Hsp90-Cdc37 complex, decreased LRRK2 levels. Interestingly, treatment with WA in the presence of celastrol enhanced the clearance of LRRK2. Overall, our data suggest that LRRK2 levels can be regulated by targeting the Hsp90-Cdc37 complex, which may have implications in the search for therapeutic strategies for Alzheimer's disease, Parkinson's disease and other LRRK2 proteinopathies.


Subject(s)
Cell Cycle Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Withanolides/pharmacology , Animals , Cell Line , Mice , Protein Binding/drug effects
2.
J Biotechnol ; 207: 34-8, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-25987361

ABSTRACT

TAR DNA binding protein (TDP43) is a DNA- and RNA-binding protein that is implicated in several neurodegenerative disorders termed as "TDP43 proteinopathies" including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and fronto-temporal lobe dementia (FTLD). We have developed an InCell Western (ICW) technique for screening TDP targeting drugs in 96 well plates. We tested 281 compounds and identified a novel compound hexachlorophene (referred to as B10) that showed potent reduction in TDP43 levels. The effect of B10 on TDP protein level was validated in two different cellular models: endogenous TDP43 expressing N9 microglial cells and TDP43-over-expressing HEK293 and HeLa cells. We also analyzed effect of B10 on various pathological forms of TDP such as the C25 cleaved fragment that localizes to the cytosol, insoluble high molecular weight species, and ALS-linked mutants. Our data suggest that B10 effectively reduces all forms of TDP. Overall, our data suggest that B10 could serve as a potential drug molecule for the treatment of AD, ALS and other TDP43 proteinopathies.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Drug Discovery/methods , Hexachlorophene/pharmacology , Animals , Cell Line , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Hexachlorophene/chemistry , Humans , Mice , Molecular Targeted Therapy , TDP-43 Proteinopathies/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...