Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Act Health ; 18(9): 1074-1081, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34172591

ABSTRACT

BACKGROUND: This study evaluated the effects of a novel nutrition and movement science after-school program integrating laboratory experiences for minority children. Laboratory experiences demonstrated how the body moves, functions, and performs in response to exercise and healthy nutrition. METHODS: A total of 76 children from 4 after-school programs that were primarily Latino and black were randomly assigned to either an experimental translational health in nutrition and kinesiology (THINK; n = 46) or standard curriculum that served as the control group (CON; n = 30). An analysis of covariance controlling for baseline values was used to compare differences between THINK and CON after the 4-month intervention. RESULTS: Following the program, THINK participants evidenced lower triceps and subscapular skinfold thickness (P < .01 and <.05, respectively). THINK students showed greater improvements in aerobic fitness, grip strength, and agility than CON (P < .01, <.01, and <.05, respectively). Participants in THINK also demonstrated higher scores on their nutrition habits/behaviors questionnaire (P < .01), nutrition science (P < .05), and exercise fitness tests (P < .001) than CON. CONCLUSION: An innovative curriculum featuring nutrition and kinesiology education interfaced with hands-on laboratory experiences and physical activities can improve physical outcomes and health-related behaviors in after-school programs serving minority children.


Subject(s)
Exercise , Schools , Child , Health Behavior , Health Promotion , Humans , Nutritional Status , Outcome Assessment, Health Care
2.
J Int Soc Sports Nutr ; 13: 14, 2016.
Article in English | MEDLINE | ID: mdl-27042166

ABSTRACT

BACKGROUND: While it is known that dietary supplements containing a combination of thermogenic ingredients can increase resting metabolic rate (RMR), the magnitude can vary based on the active ingredient and/or combination of active ingredients. The purpose of this study was to examine the effects of a commercially available thermogenic fat loss supplement on RMR and hemodynamic variables in healthy, resistance trained males. METHODS: Ten resistance-trained male participants (29 ± 9 years; 178 ± 4 cm; 85.7 ± 11 kg, and BMI = 26.8 ± 3.7) volunteered to participate in this randomized, double-blind, placebo controlled cross-over study. Participants underwent two testing sessions separated by at least 24 h. On their first visit, participants arrived to the laboratory after an overnight fast and a 24-h avoidance of exercise, and underwent a baseline RMR, HR, and BP assessment. Next, each participant ingested a thermogenic fat loss supplement (TFLS) or a placebo (PLA) and repeated the RMR, HR, and BP assessments at 60, 120, and 180 min post-ingestion. During the second visit the alternative supplement was ingested and the assessments were repeated in the exact same manner. Data were analyzed via a 2-factor [2x4] within-subjects repeated measures analysis of variance (ANOVA). Post-hoc tests were analyzed via paired samples t-tests. The criterion for significance was set at p ≤ 0.05. RESULTS: A significant main effect for time relative to raw RMR data (p = 0.014) was observed. Post-hoc analysis revealed that the TFLS significantly increased RMR at 60-min, 120-min, and 180-min post ingestion (p < 0.05) as compared to baseline RMR values. No significant changes in RMR were observed for the PLA treatment (p > 0.05). Specifically, RMR was increased by 7.8 % (from 1,906 to 2,057 kcal), 6.9 % (from 1,906 to 2,037 kcal), and 9.1 % (from 1,906 to 2,081 kcal) in the TFLS, while the PLA treatment increased RMR by 3.3 % (from 1,919 to 1,981 kcal), 3.1 % (from 1,919 to 1,978 kcal), and 2.1 % (from 1,919 to 1,959 kcal) above baseline at 60, 120, and 180-min post ingestion, respectively. Additionally, the TFLS significantly elevated RMR at the 3-h time point as compared to the PLA treatment (2,081 vs 1,959 kcal, p = 0.034). A main effect for groups was observed for systolic blood pressure, and a significant interaction and main effect for time were observed for diastolic blood pressure. It should be noted that although changes in diastolic blood pressure were significant, all values stayed within normal clinical ranges (<80 mmHg). CONCLUSIONS: The TFLS led to significant elevations in RMR as compared to baseline. These elevations came with no adverse effect relative to resting heart rate, but a slight increase in blood pressure values. Taken on a daily basis, this TFLS may increase an individual's overall energy expenditure, however; future studies should investigate if this leads to a reduction in fat mass loss over time.


Subject(s)
Basal Metabolism/drug effects , Dietary Supplements , Energy Metabolism/drug effects , Hemodynamics/drug effects , Physical Exertion/drug effects , Thermogenesis/drug effects , Weight Loss/drug effects , Adult , Basal Metabolism/physiology , Blood Pressure/drug effects , Cross-Over Studies , Double-Blind Method , Energy Metabolism/physiology , Heart Rate/drug effects , Humans , Male , Oxygen Consumption/physiology , Physical Exertion/physiology , Sports Nutritional Physiological Phenomena , Thermogenesis/physiology , Treatment Outcome
3.
J Int Soc Sports Nutr ; 13: 13, 2016.
Article in English | MEDLINE | ID: mdl-27034624

ABSTRACT

BACKGROUND: Recent investigations have identified that commercially available dietary supplements, containing a combination of thermogenic ingredients, can increase resting metabolic rate (RMR). Thermogenic dietary supplements can have a positive influence on RMR, but the magnitude can vary based on the active ingredient and/or combination of active ingredients. Additionally, further safety evaluation is needed on multi-ingredient supplements that contain caffeine, due to its potential effect on heart rate (HR) and blood pressure (BP). The purpose of this study was to examine the effects of a commercially available dietary supplement on RMR and hemodynamic variables in healthy females. METHODS: 13 female participants (26.1 ± 11.3 years; 163.4 ± 9.1 cm; 63.7 ± 8.0 kg, and 24 ± 5 BMI) volunteered to participate in this investigation. Participants underwent two testing sessions separated by approximately 7 days. On their first visit, participants arrived to the laboratory after an overnight fast and underwent a baseline RMR, HR, and BP assessment. Next, each participant ingested a thermogenic dietary supplement or placebo and repeated the RMR, HR, and BP assessments at 60, 120, and 180-minutes post-ingestion. Approximately 1-week later, the alternative supplement was ingested and the assessments were repeated in the exact same manner. Data were analyzed via a 2-factor [2x4] within-subjects repeated measures analysis of variance (ANOVA). Post-hoc tests were analyzed via paired samples t-tests. RESULTS: Repeated measures ANOVA revealed a significant effect for time relative to raw RMR data. Post-hoc analysis revealed that the dietary supplement treatment significantly increased RMR at 60-minutes, 120-minutes, and 180-minutes post ingestion (p < 0.05) as compared to baseline RMR values. No changes in RMR were observed for the placebo treatment (p > 0.05). Heart rate was not significantly affected at any time point with either supplement; however, main effects of treatment and time were observed for both systolic and diastolic blood pressure (p < 0.05). CONCLUSIONS: The thermogenic dietary supplement treatment experienced greater elevations in RMR as compared to baseline. Due to the slight elevations in blood pressure, caution should be taken for those with increased risk for hypertension or pre-hypertension. Taken on a daily basis, thermogenic dietary supplementation may increase overall energy expenditure, potentially leading to reductions in fat mass over time.


Subject(s)
Basal Metabolism/drug effects , Dietary Supplements , Energy Metabolism/drug effects , Physical Exertion/drug effects , Thermogenesis/drug effects , Analysis of Variance , Basal Metabolism/physiology , Calorimetry, Indirect , Cross-Over Studies , Double-Blind Method , Energy Metabolism/physiology , Female , Heart Rate/drug effects , Hemodynamics/drug effects , Humans , Rest/physiology , Treatment Outcome
4.
J Strength Cond Res ; 28(1): 161-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23588487

ABSTRACT

It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in the nonstretching condition (pre 211.4 ± 20.8 ms to post 212.5 ± 21.7 ms) but increased in the stretching trial (pre 210.7 ± 19.6 ms to post 237.21 ± 22.4 ms). A significant condition-by-time interaction for flexibility was found, which was increased in the stretching condition (pre 33.1 ± 2 to post 38.8 ± 2) but unchanged in the nonstretching condition (pre 33.5 ± 2 to post 35.2 ± 2). Study findings indicate that static stretching decreases performance in short endurance bouts (∼8%) while increasing GCT and muscle activation. Coaches and athletes may be at risk for decreased performance after a static stretching bout. Therefore, static stretching should be avoided before a short endurance bout.


Subject(s)
Athletic Performance/physiology , Muscle Stretching Exercises/adverse effects , Muscle, Skeletal/physiopathology , Running/physiology , Warm-Up Exercise/physiology , Adult , Cross-Over Studies , Electromyography , Exercise Test , Humans , Male , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...