Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1218679, 2023.
Article in English | MEDLINE | ID: mdl-37502211

ABSTRACT

We assessed the generalizability of machine learning methods using natural language processing (NLP) techniques to detect adverse drug events (ADEs) from clinical narratives in electronic medical records (EMRs). We constructed a new corpus correlating drugs with adverse drug events using 1,394 clinical notes of 47 randomly selected patients who received immune checkpoint inhibitors (ICIs) from 2011 to 2018 at The Ohio State University James Cancer Hospital, annotating 189 drug-ADE relations in single sentences within the medical records. We also used data from Harvard's publicly available 2018 National Clinical Challenge (n2c2), which includes 505 discharge summaries with annotations of 1,355 single-sentence drug-ADE relations. We applied classical machine learning (support vector machine (SVM)), deep learning (convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM)), and state-of-the-art transformer-based (bidirectional encoder representations from transformers (BERT) and ClinicalBERT) methods trained and tested in the two different corpora and compared performance among them to detect drug-ADE relationships. ClinicalBERT detected drug-ADE relationships better than the other methods when trained using our dataset and tested in n2c2 (ClinicalBERT F-score, 0.78; other methods, F-scores, 0.61-0.73) and when trained using the n2c2 dataset and tested in ours (ClinicalBERT F-score, 0.74; other methods, F-scores, 0.55-0.72). Comparison among several machine learning methods demonstrated the superior performance and, therefore, the greatest generalizability of findings of ClinicalBERT for the detection of drug-ADE relations from clinical narratives in electronic medical records.

3.
J Biomed Semantics ; 13(1): 17, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690873

ABSTRACT

BACKGROUND: Adverse events induced by drug-drug interactions are a major concern in the United States. Current research is moving toward using electronic health record (EHR) data, including for adverse drug events discovery. One of the first steps in EHR-based studies is to define a phenotype for establishing a cohort of patients. However, phenotype definitions are not readily available for all phenotypes. One of the first steps of developing automated text mining tools is building a corpus. Therefore, this study aimed to develop annotation guidelines and a gold standard corpus to facilitate building future automated approaches for mining phenotype definitions contained in the literature. Furthermore, our aim is to improve the understanding of how these published phenotype definitions are presented in the literature and how we annotate them for future text mining tasks. RESULTS: Two annotators manually annotated the corpus on a sentence-level for the presence of evidence for phenotype definitions. Three major categories (inclusion, intermediate, and exclusion) with a total of ten dimensions were proposed characterizing major contextual patterns and cues for presenting phenotype definitions in published literature. The developed annotation guidelines were used to annotate the corpus that contained 3971 sentences: 1923 out of 3971 (48.4%) for the inclusion category, 1851 out of 3971 (46.6%) for the intermediate category, and 2273 out of 3971 (57.2%) for exclusion category. The highest number of annotated sentences was 1449 out of 3971 (36.5%) for the "Biomedical & Procedure" dimension. The lowest number of annotated sentences was 49 out of 3971 (1.2%) for "The use of NLP". The overall percent inter-annotator agreement was 97.8%. Percent and Kappa statistics also showed high inter-annotator agreement across all dimensions. CONCLUSIONS: The corpus and annotation guidelines can serve as a foundational informatics approach for annotating and mining phenotype definitions in literature, and can be used later for text mining applications.


Subject(s)
Data Mining , Language , Data Mining/methods , Electronic Health Records , Humans , Natural Language Processing , Phenotype , Publications
SELECTION OF CITATIONS
SEARCH DETAIL
...