Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002639

ABSTRACT

BACKGROUND AND AIMS: Liver macrophages fulfill various homeostatic functions and represent an essential line of defense against pathogenic insults. However, it remains unclear whether a history of infectious disease in the liver instructs long-term alterations to the liver macrophage compartment. METHODS: We utilized a curable model of parasitic infection invoked by the protozoan parasite Trypanosoma brucei brucei to investigate whether infection history can durably reshape hepatic macrophage identity and function. Employing a combination of fate mapping, single cell CITE-sequencing, single nuclei multiome analysis, epigenomic analysis, and functional assays, we studied the alterations to the liver macrophage compartment during and after the resolution of infection. RESULTS: We show that T. b. brucei infection alters the composition of liver-resident macrophages, leading to the infiltration of monocytes that differentiate into various infection-associated macrophage populations with divergent transcriptomic profiles. Whereas infection-associated macrophages disappear post-resolution of infection, monocyte-derived macrophages engraft in the liver, assume a Kupffer cell (KC)-like profile and co-exist with embryonic KCs in the long-term. Remarkably, the prior exposure to infection imprinted an altered transcriptional program on post-resolution KCs that was underpinned by an epigenetic remodeling of KC chromatin landscapes and a shift in KC ontogeny, along with transcriptional and epigenetic alterations in their niche cells. This reprogramming altered KC functions and was associated with increased resilience to a subsequent bacterial infection. CONCLUSION: Our study demonstrates that a prior exposure to a parasitic infection induces trained immunity in KCs, reshaping their identity and function in the long-term. IMPACT AND IMPLICATIONS: Although the liver is frequently affected during infections, and despite housing a major population of resident macrophages known as Kupffer cells (KCs), it is currently unclear whether infections can durably alter KCs and their niche cells. Our study provides a comprehensive investigation into the long-term impact of a prior, cured parasitic infection, unveiling long-lasting ontogenic, epigenetic, transcriptomic and functional changes to KCs as well as KC niche cells, which may contribute to KC remodeling. Our data suggest that infection history may continuously reprogram KCs throughout life with potential implications for subsequent disease susceptibility in the liver, influencing preventive and therapeutic approaches.

2.
Cancers (Basel) ; 15(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958332

ABSTRACT

Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.

3.
Front Immunol ; 14: 1166180, 2023.
Article in English | MEDLINE | ID: mdl-37622122

ABSTRACT

Conventional dendritic cells (cDCs) are at the forefront of activating the immune system to mount an anti-tumor immune response. Flt3L is a cytokine required for DC development that can increase DC abundance in the tumor when administered therapeutically. However, the impact of Flt3L on the phenotype of distinct cDC subsets in the tumor microenvironment is still largely undetermined. Here, using multi-omic single-cell analysis, we show that Flt3L therapy increases all cDC subsets in orthotopic E0771 and TS/A breast cancer and LLC lung cancer models, but this did not result in a reduction of tumor growth in any of the models. Interestingly, a CD81+migcDC1 population, likely developing from cDC1, was induced upon Flt3L treatment in E0771 tumors as well as in TS/A breast and LLC lung tumors. This CD81+migcDC1 subset is characterized by the expression of both canonical cDC1 markers as well as migratory cDC activation and regulatory markers and displayed a Treg-inducing potential. To shift the cDC phenotype towards a T-cell stimulatory phenotype, CD40 agonist therapy was administered to E0771 tumor-bearing mice in combination with Flt3L. However, while αCD40 reduced tumor growth, Flt3L failed to improve the therapeutic response to αCD40 therapy. Interestingly, Flt3L+αCD40 combination therapy increased the abundance of Treg-promoting CD81+migcDC1. Nonetheless, while Treg-depletion and αCD40 therapy were synergistic, the addition of Flt3L to this combination did not result in any added benefit. Overall, these results indicate that merely increasing cDCs in the tumor by Flt3L treatment cannot improve anti-tumor responses and therefore might not be beneficial for the treatment of cancer, though could still be of use to increase cDC numbers for autologous DC-therapy.


Subject(s)
Lung Neoplasms , T-Lymphocytes, Regulatory , Animals , Mice , Receptors, CCR7 , Lung Neoplasms/drug therapy , Combined Modality Therapy , CD40 Antigens , Tumor Microenvironment
4.
Eur J Immunol ; 53(9): e2250024, 2023 09.
Article in English | MEDLINE | ID: mdl-37366246

ABSTRACT

mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas. Nanobodies are rapidly cleared from the circulation, which generates a fast target-to-background contrast that is ideally suited for molecular imaging purposes but may be less optimal for therapy. To circumvent this problem, nanobodies have been formatted to noncovalently bind albumin, increasing their serum half-life without majorly increasing their size. Finally, nanobodies have shown superior qualities to infiltrate brain tumors as compared to mAbs. In this review, we discuss why these features make nanobodies prime candidates for targeted therapy of cancer.


Subject(s)
Brain Neoplasms , Single-Domain Antibodies , Humans , Single-Domain Antibodies/therapeutic use , Antibodies, Monoclonal , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...