Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomater Funct Mater ; 10(1): 43-8, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22467049

ABSTRACT

UNLABELLED: Simulated body fluid (SBF) is an artificial fluid which has ionic composition and ionic concentration similar to human blood plasma. PURPOSE: This paper compares the interaction between the nanomaterial containing calcium phosphate/poly-dl-lactide-co-glycolide (N-CP/PLGA) and SBF, in order to investigate whether and to what extent inorganic ionic composition of human blood plasma leads to the aforementioned changes in the material. METHODS: N-CP/PLGA was incubated for 1, 2, 3, and 5 weeks in SBF. The surface of the material was analyzed on SEM-EDS and FTIR spectrometer, while SBF was subjected to pH and electrical conductivity measurement. RESULTS: Our results indicate that dissolution of the polymer component of the material N-CP/PLGA and precipitation of the material similar to hydroxyapatite on its surface are based on the morphologic changes seen in this material. CONCLUSIONS: The mechanism of the apatite formation on the bioceramic surface was intensively studied and was considered crucial in designing the new biomaterials. The results obtained in this work indicate that N-CP/PLGA may be a good candidate for application to bone regeneration.


Subject(s)
Apatites/chemistry , Lactic Acid/chemistry , Models, Biological , Polyglycolic Acid/chemistry , Apatites/blood , Electric Conductivity , Humans , Hydrogen-Ion Concentration , Lactic Acid/blood , Microscopy, Electron, Scanning , Nanostructures/chemistry , Nanostructures/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...