Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 20(38): 382202, 2008 Sep 24.
Article in English | MEDLINE | ID: mdl-21693807

ABSTRACT

The positions of the molecular orbitals of the conjugated semiconducting polymer, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), relative to the Fermi level, shift when lead selenide (PbSe) quantum dots or the fullerene based molecule [(6)]-1-(3-(methoxycarbonyl)propyl)-[(5)]-1-phenyl-[5,6]-C61, known as PCBM, are dispersed in the polymer host. This is evident from the consistent shifts of occupied molecular orbitals and the valence band edge to greater binding energies and a decrease in density of states near the Fermi level, as probed by photoemission. In the case of PbSe nanocrystal quantum dots, far smaller binding energy shifts were observed. This behavior seems more characteristic of a charge donor, though PbSe and PCBM should act as charge acceptors. In the case of both dopants, what doping does exist occurs only with small concentrations (<10%). MEH-PPV doped with a large-Z semiconducting material, such as PbSe nanocrystal quantum dots, is a candidate for use as a good gamma radiation detector.

SELECTION OF CITATIONS
SEARCH DETAIL
...