Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 221: 1171-1183, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36087757

ABSTRACT

The meniscus is a fibrocartilaginous tissue that is very important for the stability of the knee joint. However, it has a low ability to heal itself, so damage to it will always lead to articular cartilage degeneration. The goal of this study was to make a new type of meniscus scaffold made of chitosan, loofah mat, and PHBV nanofibers, as well as to describe hydrogel composite scaffolds in terms of their shape, chemical composition, mechanical properties, and temperature. Three different concentrations of genipin (0.1, 0.3, and 0.5 %) were used and the optimal crosslinker concentration was 0.3 % for Chitosan/loofah (CL) and Chitosan/loofah/PHBV fiber (CLF). Scaffolds were seeded using undifferentiated MSCs and incubated for 21 days to investigate the chondrogenic potential of hydrogel scaffolds. Cell proliferation analyses were performed using WST-1 assay, GAG content was analyzed, SEM and fluorescence imaging observed morphologies and cell attachment, and histological and immunohistochemical studies were performed. The in vitro analysis showed no cytotoxic effect and enabled cells to attach, proliferate, and migrate inside the scaffold. In conclusion, the hydrogel composite scaffold is a promising material for engineering meniscus tissue.


Subject(s)
Chitosan , Luffa , Meniscus , Tissue Engineering/methods , Chitosan/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , 3-Hydroxybutyric Acid , Polyesters/chemistry , Hydroxybutyrates
2.
J Biomater Appl ; 37(4): 683-697, 2022 10.
Article in English | MEDLINE | ID: mdl-35722881

ABSTRACT

The main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.1, 0.3, and 0.5%) had an interconnected microporous structure with a swelling ratio of about 400% and water content values between 77 and 83% which is similar to native cartilage extracellular matrix. The compressive strength of all the hydrogel composite scaffolds was found to be similar (∼32 kPa) and suitable for cartilage tissue engineering applications. Besides, the hydrogel composite scaffold comprising 0.3% (w/v) genipin had the highest tan δ value (0.044) at a frequency of 1 Hz which is around the walking frequency of a person. According to the in vitro analysis, this hydrogel composite scaffold did not show any cytotoxic effect on the rabbit mesenchymal stem cells and enabled cells to attach, proliferate and also migrate through the inner area of the scaffold. In conclusion, the produced hydrogel composite scaffold holds great promise for meniscus tissue engineering.


Subject(s)
Chitosan , Meniscus , Animals , Rabbits , Cellulose , Chitosan/chemistry , Collagen , Hydrogels/chemistry , Iridoids , Polyesters/chemistry , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...