Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569136

ABSTRACT

The kinetic properties and thermal characteristics of fresh pork meat proteins (Longissimus dorsi), as well as osmotically dehydrated meat proteins, were investigated using differential scanning calorimetry. Two isoconversional kinetical methods, namely the differential Friedman and integral Ortega methods, were employed to analyze the data. The obtained kinetic triplet, activation energy, pre-exponential factor, and extent of conversion, has been discussed. The resulting activation energy for proteins of fresh meat ranges between 751 kJ·mol-1 for myosin, 152 kJ·mol-1 for collagen and sarcoplasmic proteins, and 331 kJ·mol-1 for actin at a conversion degree of 0.1 to 0.9. For osmotically dried pork meat proteins, the values range from 307 kJ·mol-1 for myosin 272 kJ·mol-1 for collagen and sarcoplasmic proteins, and 334.83 kJ·mol-1 for actin at a conversion degree from 0.1 to 0.9. The proteins of the dry meat obtained by osmotic dehydration in molasses could be described as partly unfolded as they retain the characteristic protein denaturation transition. Concerning the decrease in enthalpies of proteins denaturation, thermodynamic destabilization of dried meat proteins occurred. On the contrary, dried meat proteins were thermally stabilized with respect to increase in the temperatures of denaturation. Knowledge of the nature of meat protein denaturation of each kind of meat product is one of the necessary tools for developing the technology of meat product processing and to achieve desired quality and nutritional value. The kinetic analysis of meat protein denaturation is appropriate because protein denaturation gives rise to changes in meat texture during processing and directly affects the quality of product.

2.
Foods ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673414

ABSTRACT

The demand for ready-to-use functional foods is high, which encourages manufacturers to develop new, nutritionally valuable products. As an excellent source of biologically active compounds, beetroot (Beta vulgaris L.) is considered to have highly beneficial effects on health. This research aimed to evaluate the impact of replacing spelt flour (SF) with 15%, 20% and 25% beetroot powder (BP). The physicochemical and functional properties of biscuits baked at different temperatures (150 and 170 °C) were followed at the beginning, and after 3 and 6 months of storage as standard conditions. Moisture content and water activity (aw) gave insight into the biscuits' shelf life. The value of aw from 0.35 to 0.56 indicated appropriate storability. Dietary fiber content in fresh biscuits ranged from 6.1% to 7.6%, protein from 9.2% to 8.9% and sugar from 30.6% to 35.9%. The content of betalain, total polyphenols and flavonoids, and antioxidant activity (DPPH, FRAP) increased with beetroot powder content incorporated. A slight decrease of all the mentioned parameters during the storage indicated satisfied retention of bioactive molecules. The content of prevalent phenolic compounds gallic and protocatechuic acid, identified by HPLC, decreased from 22.2-32.0 and 21.1-24.9 in fresh biscuits to 18.3-23.4 and 17.3-20.3 mg/100 g upon six months of storage, respectively. An increase of the L* and a* and a decrease of the b* coordinate values, compared with the control sample without beetroot values, was noticed as well as the expected level of their change during the storage. The obtained results indicated that biscuits enriched with beetroot powder showed a significantly improved functional, nutritional and antioxidant potential during storage.

3.
Food Technol Biotechnol ; 59(3): 282-294, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34759760

ABSTRACT

RESEARCH BACKGROUND: Apple juice is one of the most popular and liked beverages worldwide. Due to the increased health consciousness among consumers, beetroot and chokeberry juices have also rising consumption trends. Despite representing a considerable percentage of the processed fruit and rich source of bioactive compounds, fruit pomace, remaining after juice production, has still been underutilised. Here, the possibility of using apple, beetroot and chokeberry pomace in liqueur formulations is investigated. EXPERIMENTAL APPROACH: Apple and chokeberry liqueurs were produced from apple and chokeberry pomace extracts, respectively. Apple/chokeberry and apple/beetroot liqueurs were obtained by combining apple pomace with chokeberry and beetroot pomace extracts in ratios 50:50 and 70:30, respectively. The sensory quality and acceptability of freshly prepared liqueurs were evaluated by experts and consumers. Sugars and phenolics were identified and quantified by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) and high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS), respectively. Storability was preliminarily evaluated based on monitoring of total phenolic concentration, antioxidant activity and colour each month during 6 months of storage at 4 and 22 °C. RESULTS AND CONCLUSIONS: The expert and the consumer testing indicated that apple and chokeberry pomace could be used as raw materials without any flavour corrections while apple/beetroot pomace liqueur would require modification. High total phenolic content and antioxidant activity were found in all freshly prepared liqueurs, with chokeberry liqueur being by far superior. Among identified phenolics, ellagic acid and phlorizin were quantified as the most prominent, except in chokeberry liqueur, where phlorizin was not quantified. Despite the decrease in total phenolic concentration and antioxidant activity after 6 months, liqueurs still represented a rich source of phytochemicals. The highest phenolic compound retention and antioxidant activity maintenance were observed in chokeberry liqueur. Also, the appealing colour was retained despite the changes detected in chromatic characteristics. NOVELTY AND SCIENTIFIC CONTRIBUTION: The possibility of apple, beetroot and chokeberry pomace restoration into the food chain by the production of liqueurs has been demonstrated for the first time. Functional and sensorial properties of newly developed liqueurs indicated that the selected pomace represents the promising raw material for liqueur production. The applied approach represents a contribution to the circular economy in juice production.

4.
Foods ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34441473

ABSTRACT

Following the idea of sustainability in food production, a yogurt premix based on beetroot (Beta vulgaris) pomace flour (BPF) was developed. BPF was granulated with lactose solution containing lactic acid bacteria (LAB) by a fluidized bed. Particle size increased ~30%. A decrease in Carr Index from 21.5 to 14.98 and Hausner ratio from 1.27 to 1.18 confirmed improved flowability of granulated BPF, whereas a decrease in water activity implied better storability. Yogurts were produced weekly from neat starters and granulated BPF (3% w/w) that were stored for up to one month (4 °C). High viability of Streptococcus thermophilus was observed. Less pronounced syneresis, higher inhibition of colon cancer cell viability (13.0-24.5%), and anti-Escherichia activity were ascribed to BPF yogurts or their supernatants (i.e., extracted whey). Acceptable palatability for humans and dogs was demonstrated. A survey revealed positive consumers' attitudes toward the granulated BPF as a premix for yogurts amended to humans and dogs. For the first time, BPF granulated with LAB was used as a premix for a fermented beverage. An initial step in the conceptualization of a novel DIY (do it yourself) formula for obtaining a fresh yogurt fortified with natural dietary fiber and antioxidants has been accomplished.

5.
Foods ; 9(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531907

ABSTRACT

To meet the demand for new functional foods in line with the trend of sustainable development, a novel probiotic yogurt fortified with 1%, 3%, and 5% apple pomace flour (APF) added immediately after inoculation with Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidum was developed. Upon fermentation in the presence of APF, a number of probiotic strains remained within the required range, while the syneresis of enriched yogurts was reduced up to 1.8 times in comparison to the control. Supernatants (i.e., extracted whey) obtained from yogurts with 1%, 3%, and 5% APF respectively had 1.4-, 1.8-, and 2.3-fold higher total phenolic content (TPC) than the control, 3.3-, 4.7-, and 8.0-fold higher radical scavenging (DPPH), and 1.3-, 1.6-, and 1.7-fold higher reducing activity (FRAP). Also, probiotic yogurt supernatants (3% and 5%) inhibited colon cancer cells' viability (HCT 116, 12% and 17%; SW-620, 13% and 19%, respectively). The highest firmness, cohesiveness, and viscosity index values, and the highest scores for color and taste, were obtained for yogurt with 3% APF, indicating that this is the optimal APF amount for the production of novel yogurt with functional properties.

6.
Antioxidants (Basel) ; 9(5)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408574

ABSTRACT

Apple pomace flour (APF) obtained at industrial scale level by the application of innovative technological process (dehydration (5 h, T ≤ 55 °C), grinding (300 µm)) was evaluated as a source of bioactive compounds with antioxidative, antiobesity and antidiabetic effects. Proximate composition, individual (HPLC-DAD-MS/MS) and total phenols (TPC) as well as flavonoids content (TFC), antioxidant (AO) activity (DPPH, ABTS, HPMC), water and oil holding capacity (WHC and OHC) of APFs obtained from apple pomace from mixed and individual apple cultivars grown conventionally and organically were compared. The effect of APF supplementation on the glycaemic status and glucose tolerance (oral glucose tolerance test (OGTT)) of C57BL/6J mice exposed to high-fat and sucrose diet was examined. High K content (4.2-6.4 g/kg), dietary fibres (35-45 g/100 g), TPC (4.6-8.1 mg GAE/g), TFC (18.6-34.6 mg QE/g), high water and oil holding capacity (4.7-6.4 and 1.3-1.6 g/g) were observed in the APFs. Content of major phenols (phlorizin, chlorogenic acid, quercetin), TPC and TFC correlated highly with prominent AO activity. APF supplementation lowered the increase of body weight gain and blood glucose, and improved glucose tolerance significantly. Health-promoting biomolecules, AO activity, functional properties and prevention of diet-driven glucose metabolism disorders pave the way to APF exploitation in human nutrition.

7.
Foods ; 8(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717294

ABSTRACT

Apple pomace flour (APF) with high content of dietary fibers (DF), total polyphenolics (TPCs) and flavonoids (TFCs) was produced at the industrial scale. Bulk and tapped density, swelling, water and oil holding capacity, solubility and hydration density of fine and coarse APF with average particle size 0.16 and 0.50 mm were compared. The effect of wheat flour substitution with 25%, 50% and 75% of fine and coarse APF was studied upon cookies production at the industrial scale and after one year of storage. Coarse APF performed better in respect to sensorial properties, content and retention of dietary compounds and antioxidant (AO) activity. The cookies with optimal share of coarse APF (50%) contained 21 g/100 g of DF and several times higher TPC, TFC as well as AO activity than control cookies, retained well health promoting compounds and maintained an intensely fruity aroma and crispy texture. They were acceptable for consumers according to the hedonic test.

8.
Acta Chim Slov ; 59(1): 42-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-24061171

ABSTRACT

The antioxidant effect of ascorbic acid and EDTA (ethylenediaminetetraacetic acid) in food emulsions, based on whey and sunflower oils with enhanced oleic acid, α- and ß- tocopherol content, was not described up to now. Salad dressings based on cold-pressed high-oleic/α-, ß- tocopherol sunflower oil were oxidatively stable after 3 months of storage at 25 °C regarding primary (peroxide value, PV) and secondary (hexanal) lipid oxidation products (PV = 0.34 mmol O2 kg-1, hexanal value = 1.54 mg kg-1). Slight enhancement of PV and hexanal values was recorded in salad dressings prepared with cold-pressed medium-oleic/α-, ß- tocopherol oil, after 3 months of storage at 25 °C, and was inhibited by ascorbic acid or EDTA. Ascorbic acid (0.50 g kg-1) reduced PV by 80% and hexanal value by 32%. EDTA (0.075 g kg-1) reduced PV by 60% and hexanal value by 27%. In salad dressings, containing linoleic/a- tocopherol sunflower oil, the antioxidant effects of ascorbic acid and EDTA were as following: ascorbic acid (0.25-4.00 g kg-1) reduced PV by 83-100% and hexanal value by 82-73%; EDTA (0.075 g kg-1) reduced PV by 75% and hexanal value by 76%, after 12 months of storage at 4 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...