Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 27(10): 103108, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092456

ABSTRACT

Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. We examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would send the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.

2.
Nat Commun ; 7: 10788, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26988313

ABSTRACT

The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.


Subject(s)
Biological Clocks , Nonlinear Dynamics , Electrochemistry , Models, Biological
3.
Phys Rev Lett ; 111(2): 024102, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889405

ABSTRACT

For many biological and engineered systems, a central function or design goal is to abbreviate the time required to synchronize a rhythmic process to an external forcing signal. We present a theory for deriving the input that effectively minimizes the average transient time required to entrain a phase model, which enables a practical technique for constructing fast entrainment waveforms for general nonlinear oscillators. This result is verified in numerical simulations using the Hodgkin-Huxley neuron model, and in experiments on an oscillatory electrochemical system.

4.
J Neural Eng ; 9(4): 046015, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22791697

ABSTRACT

In this paper, we derive the minimum-energy periodic control that entrains an ensemble of structurally similar neural oscillators to a desired frequency. The state-space representation of a nominal oscillator is reduced to a phase model by computing its limit cycle and phase response curve, from which the optimal control is derived by using formal averaging and the calculus of variations. We focus on the case of a 1:1 entrainment ratio and suggest a simple numerical method for approximating the optimal controls. The method is applied to asymptotically control the spiking frequency of neural oscillators modeled using the Hodgkin-Huxley equations. Simulations are used to illustrate the optimality of entrainment controls derived using phase models when applied to the original state-space system, which is crucial for using phase models in control synthesis for practical applications. This work addresses a fundamental problem in the field of neural dynamics and provides a theoretical contribution to the optimal frequency control of uncertain oscillating systems.


Subject(s)
Biological Clocks , Cell Engineering/methods , Models, Neurological , Neurons
5.
Comput Methods Programs Biomed ; 95(1): 31-46, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19233504

ABSTRACT

The paper integrates and adapts a range of advanced computational, mathematical and statistical tools for the purpose of analysis of neonate sleep stages based on extensive electroencephalogram (EEG) recordings. The level of brain dysmaturity of a neonate is difficult to assess by direct physical or cognitive examination, but dysmaturity is known to be directly related to the structure of neonatal sleep as reflected in the nonstationary time series produced by EEG signals which, importantly, can be collected trough a noninvasive procedure. In the past, the assessment of sleep EEG structure has often been done manually by experienced clinicians. The goal of this paper is to develop rigorous algorithmic tools for the same purpose by providing a formal scheme to separate different sleep stages corresponding to different stationary segments of the EEG signal based on statistical analysis of the spectral and nonlinear characteristics of the sleep EEG recordings. The methods developed in this paper can, potentially, be translated to other areas of biomedical research.


Subject(s)
Electroencephalography/methods , Signal Processing, Computer-Assisted , Sleep Stages , Algorithms , Automation , Brain/pathology , Brain Mapping/methods , Cluster Analysis , Computational Biology/methods , Electronic Data Processing , Humans , Infant, Newborn , Infant, Premature , Models, Statistical , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...