Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 276(Pt 1): 133702, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972659

ABSTRACT

Bacterial cellulose (BC) is a promising natural polymer prized for its biocompatibility, microporosity, transparency, conformability, elasticity, and ability to maintain a moist wound environment while absorbing exudates. These attributes make BC an attractive material in biomedical applications, particularly in skin tissue repair. However, its lack of inherent antimicrobial activity limits its effectiveness. In this study, BC was enhanced by incorporating cerium (IV)-oxide (CeO2) nanoparticles, resulting in a series of bacterial cellulose-CeO2 (BC-CeO2) composite materials. Characterization via FESEM, XRD, and FTIR confirmed the successful synthesis of the composites. Notably, BC-CeO2-1 exhibited no cytotoxic or genotoxic effects on peripheral blood lymphocytes, and it additionally protected cells from genotoxic and cytotoxic effects in H2O2-treated cultures. Redox parameters in blood plasma samples displayed concentration and time-dependent trends in PAB and LPP assays. The incorporation of CeO2 nanoparticles also bolstered antimicrobial activity, expanding the potential biomedical applications of these composites.

2.
J Funct Biomater ; 15(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535265

ABSTRACT

In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5-2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.

3.
Vet Res Commun ; 48(1): 591-596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37737468

ABSTRACT

Bacterial infections and resistance to antibiotics are increasingly severe problems. In recent years, Staphylococcus species have emerged as important pathogens in animals and humans. Current therapeutic methods against these species have serious disadvantages; therefore new agents with antibacterial potential, such as plant-based substances, are very important in therapy. We report a pilot study with new method of fractioning the dehydrogenate polymer DHP obtained from coniferyl alcohol and application of the low-MW fractions of 200-3000 Da for antibacterial activity in healing animal lesions. In vivo experiments were conducted on the dogs having a skin lesion. Dogs were treated with the suspension containing the low-MW DHP fractions as the active ingredient, in combination with alginate for 7 days. Cytological smears and microbiological analyses of the affected area were performed. Staphylococcus spp. was isolated from lesions in all dogs from our research. The results show that the low-MW DHP suspension in alginate promotes skin healing and reduction of the infection of the lesions in the affected animals. Pharmaceutical composition containing the low-MW DHP fractions exerts a soothing effect on the subject in wound treatment. Reduction in the number of bacteria by 30% and more were noticed in 6 dogs, while in 4 dogs this percentage is above 50%. No side effects were noticed. Synthesized lignin oligomers may have a significant place as antimicrobial and skin healing agents, especially since an increasing number of multidrug-resistant staphylococci are found on the skin lesions in animals.


Subject(s)
Dog Diseases , Skin Diseases , Animals , Dogs , Alginates , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dog Diseases/drug therapy , Lignin/pharmacology , Lignin/therapeutic use , Microbial Sensitivity Tests/veterinary , Molecular Weight , Pilot Projects , Polymers , Skin Diseases/veterinary
4.
Antibiotics (Basel) ; 12(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37237822

ABSTRACT

Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.

5.
Pharmaceutics ; 15(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37111655

ABSTRACT

The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.

6.
Beilstein J Nanotechnol ; 14: 165-174, 2023.
Article in English | MEDLINE | ID: mdl-36761674

ABSTRACT

Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.

7.
Materials (Basel) ; 15(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36233866

ABSTRACT

Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with a diameter of 19-89 nm and optical band gap of 3.23-4.73 eV, featuring oxygen-containing, amino, and amide functional groups. Dots showed antioxidative activity; they quenched •OH at a concentration of 10 µg·mL-1, scavenged DPPH• radicals even at 5 µg·mL-1, and caused discoloration of KMnO4 at 30 µg·mL-1. Under light irradiation, dots were able to produce singlet oxygen, which remained stable for 10 min. Photoinduced effects by GQDs were studied on several bacterial strains (Listeria monocytogenes, Bacillus cereus, clinical strains of Streptococcus mutans, S. pyogenes, and S. sangunis, Pseudomonas aeruginosa, and one yeast strain Candida albicans) but antibacterial effects were not noticed.

8.
J Biomed Mater Res B Appl Biomater ; 110(8): 1796-1805, 2022 08.
Article in English | MEDLINE | ID: mdl-35191591

ABSTRACT

The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.


Subject(s)
Graphite , Methicillin-Resistant Staphylococcus aureus , Quantum Dots , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Cellulose/pharmacology , Escherichia coli , Graphite/pharmacology , Humans , Hydrogels/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Wound Healing
9.
Int J Biol Macromol ; 191: 315-323, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34562533

ABSTRACT

Since the pathogenic bacteria biofilms are involved in 70% of chronic infections and their resistance to antibiotics is increased, the research in this field requires new healing agents. New composite hydrogels were designed as potential chronic wound dressings composed of bacterial cellulose (BC) with chitosan polymer (Chi) - BC-Chi and chitosan nanoparticles (nChiD) - BC-nChiD. nChiD were obtained by gamma irradiation at doses: 20, 40 and 60 kGy. Physical and chemical analyses showed incorporation of Chi and encapsulation of nChiD into BC. The BC-Chi has the highest average surface roughness. BC-nChiD hydrogels show an irradiated dose-dependent increase of average surface roughness. New composite hydrogels are biocompatible with excellent anti-biofilm potential with up to 90% reduction of viable biofilm and up to 65% reduction of biofilm height. The BC-nChiD showed better dressing characteristics: higher porosity, higher wound fluid absorption and faster migration of cells (in vitro healing). All obtained results confirmed both composite hydrogels as promising chronic wound healing agents.


Subject(s)
Anti-Bacterial Agents/chemistry , Bandages, Hydrocolloid , Cellulose/chemistry , Chitosan/chemistry , Nanogels/chemistry , Adult , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cells, Cultured , Humans
10.
Astrobiology ; 21(6): 706-717, 2021 06.
Article in English | MEDLINE | ID: mdl-33646011

ABSTRACT

Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.


Subject(s)
Acetobacteraceae , Mars , Space Flight , Cellulose , Epigenesis, Genetic , Extraterrestrial Environment
11.
Mater Sci Eng C Mater Biol Appl ; 122: 111925, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33641918

ABSTRACT

Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment.


Subject(s)
Antioxidants , Nanocomposites , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants/pharmacology , Cellulose , Hydrogels , Wound Healing
12.
RSC Adv ; 11(15): 8559-8568, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423394

ABSTRACT

Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereas in vitro release test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.

13.
Int J Biol Macromol ; 118(Pt A): 494-503, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29909035

ABSTRACT

Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.


Subject(s)
Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Hydrogels/chemistry , Lignin/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/pathogenicity , Bandages , Cellulose/therapeutic use , Cellulose/ultrastructure , Humans , Hydrogels/therapeutic use , Lignin/therapeutic use , Lignin/ultrastructure , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Wound Healing
14.
Int J Radiat Biol ; 93(5): 544-552, 2017 05.
Article in English | MEDLINE | ID: mdl-27921519

ABSTRACT

PURPOSE: Extremely low frequency (ELF) magnetic fields as essential ecological factors may induce specific responses in genetically different lines. The object of this study was to investigate the impact of the ELF magnetic field on fitness components and locomotor activity of five Drosophila subobscura isofemale (IF) lines. MATERIALS AND METHODS: Each D. subobscura IF line, arbitrarily named: B16/1, B24/4, B39/1, B57/2 and B69/5, was maintained in five full-sib inbreeding generations. Their genetic structures were defined based on the mitochondrial DNA variability. Egg-first instar larvae and 1-day-old flies were exposed to an ELF magnetic field (50 Hz, 0.5 mT, 48 h) and thereafter, fitness components and locomotor activity of males and females in an open field test were observed for each selected IF line, respectively. RESULTS: Exposure of egg-first instar larvae to an ELF magnetic field shortened developmental time, and did not affect the viability and sex ratio of D. subobscura IF lines. Exposure of 1-day-old males and females IF lines B16/1 and B24/4 to an ELF magnetic field significantly decreased their locomotor activity and this effect lasted longer in females than males. CONCLUSIONS: These results indicate various responses of D. subobscura IF lines to the applied ELF magnetic field depending on their genetic background.


Subject(s)
Behavior, Animal/physiology , Drosophila/genetics , Drosophila/radiation effects , Locomotion/physiology , Magnetic Fields , Physical Fitness/physiology , Animals , Behavior, Animal/radiation effects , Drosophila/classification , Female , Locomotion/radiation effects , Male , Radiation Dosage , Species Specificity , Whole-Body Irradiation/methods
15.
Int J Antimicrob Agents ; 48(6): 732-735, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27742207

ABSTRACT

Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments.


Subject(s)
Alginates , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Biocompatible Materials , Drug Carriers , Hydrogel, Polyethylene Glycol Dimethacrylate , Lignin/pharmacology , Anti-Infective Agents/toxicity , Biofilms/drug effects , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/physiology , Glucuronic Acid , Hexuronic Acids , Humans , Lignin/toxicity , Microbial Sensitivity Tests , Wounds and Injuries/drug therapy
16.
Chem Biol Interact ; 232: 85-93, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25813935

ABSTRACT

Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 µM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine.


Subject(s)
Antineoplastic Agents/pharmacology , Cerium/pharmacology , Nanoparticles , Antioxidants/metabolism , Cell Line, Tumor/drug effects , Cerium/chemistry , Drug Screening Assays, Antitumor , HT29 Cells/drug effects , Humans , Nanoparticles/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Triacetoneamine-N-Oxyl/metabolism , Triacetoneamine-N-Oxyl/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...