Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(28): 6342-6353, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37432303

ABSTRACT

Ionic liquid viscosity is one of the most important properties to consider for practical applications. Yet, the connection between local structure and viscosity remains an open question. This article explores the structural origin of differences in the viscosity and viscoelastic relaxation across several ionic liquids, including cations with alkyl, ether, and thioether tails, of the imidazolium and pyrrolidinium families coupled with the NTf2- anion. In all cases, for the systems studied here, we find that pyrrolidinium-based ions are "harder" than their imidazolium-based counterparts. We make a connection between the chemical concept of hardness vs softness and specific structural and structural dynamic quantities that can be derived from scattering experiments and simulations.

2.
J Phys Chem B ; 122(8): 2379-2388, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29377698

ABSTRACT

Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [ Wu , B. ; Maroncelli , M. ; Castner , E. W. Jr Photoinduced Bimolecular Electron Transfer in Ionic Liquids . J. Am. Chem. Soc. 139 , 2017 , 14568 ]. Herein, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution. The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...