Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Balkan J Med Genet ; 21(1): 19-25, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30425906

ABSTRACT

The PPARD gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including lipid metabolism in muscle cells. In this study, we assess the relationship between PPARD gene expression lipid metabolism parameters and the variation of the PPARD gene expression before (T1) and after 12 hours of training (T2) sessions in a group of football players. Peripheral blood lymphocytes were obtained from 22 football players (17.5±0.7 years, 178±0.7 cm, 68.05±9.18 kg). The PPARD gene expression, analyzed by quantitative polymerase chain reaction (qPCR), was significantly higher after T2 (p = 0.0006). Moreover, at the end of the training cycle, there was a significant decrease in relative fat tissue (FAT) (%) (p = 0.01) and absolute FAT (kg) (p = 0.01). A negative correlation was observed between absolute FAT (kg) and PPARD gene expression level in T2 (p = 0.03). The levels of cholesterol and triglyceride (TG) fractions were not significantly different (p >0.05) before and after training. No significant relationship between PPARD expression and cholesterol or TG levels was found. We found that physical training affects PPARD expression. Moreover, the negative correlation between PPARD expression and absolute FAT (kg) level may be indicative of the contribution of PPARD in metabolic adaptation to increased lipid uptake that can be used to control the body composition of athletes.

2.
J Biol Regul Homeost Agents ; 32(5): 1205-1210, 2018.
Article in English | MEDLINE | ID: mdl-30334414

ABSTRACT

Physical activity leads to changes in water and electrolyte homeostasis and to enhanced purine metabolism. The typical abnormalities observed after exercise are hyperkaliemia, hyper- or hyponatremia and hyperuricemia. The possible explanations of hyperuricemia are: increased metabolism and decreased elimination of uric acid. Changes in uric acid excretion are commonly observed in disturbances of sodium and water homeostasis. The aim of this study was to evaluate changes in electrolytes and uric acid excretion during a very long period of exercise. Twenty subjects with a mean age of 40.75±7.15 years took part in a 100 km run. The route of the run was based on the university stadium track. All subjects were experienced amateur runners, with a mean time of regular running of 6.11±7.19 years. Blood was collected before the start, after every 25 km and 12 hours after the run. The levels of electrolytes, creatinine, uric acid, cortisol, aldosterone, creatine kinase, C-reactive protein and interleukin-6 were measured. Creatinine clearance, urinary potassium-to-sodium ratio, fractional excretion of electrolytes and uric acid were calculated. Seventeen runners completed the study. Significant increases in sodium (from 141.65±1.90 to 144.29±3.65mmol/l), potassium (from 4.53±0.34 to 5.03±0.42mmol/l), creatinine (from 0.88±0.11 to 1.10±0.20mg/dl) and uric acid (from 5.15±0.87 to 5.94±1.50 mg/dl) were observed after 100 km (p less than 0.05). Other significant changes during the study were noted in fractional excretions of sodium (from 0.86±0.29 to 0.33±0.13%) and potassium (from 6.66±2.79 to 18.90±10.01%), probably reflecting the decrease in renal blood flow (RBF) and increase in renal tubule reabsorption. The fractional excretion of uric acid slightly increased but without statistical significance from 5.34±1.51 to 6.09±2.34%. The results of our study showed that during very long but not very intensive exercise there is no change in uric acid excretion, although at the same time profound changes in electrolyte excretion are found. Both hyperuricemia and hyperuricosuria may be harmful, therefore it seems logical that the best way to avoid those abnormalities is to maintain fractional uric acid excretion.


Subject(s)
Running/physiology , Uric Acid/blood , Adult , Electrolytes/blood , Humans , Potassium/blood , Sodium/blood , Time Factors
3.
Biol Sport ; 34(2): 97-103, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28566802

ABSTRACT

Proteoglycans are considered integral structural components of tendon and ligament and have been implicated in the resistance of compressive forces, collagen fibrillogenesis, matrix remodelling and cell signalling. Several sequence variants within genes encoding proteoglycans were recently implicated in modulating anterior cruciate ligament ruptures (ACLR). This study aimed to test the previously implicated variants in proteoglycan and vascular epithelial growth factor encoding genes with risk of ACLR in a population from Poland. A case control genetic association study was conducted using DNA samples from 143 healthy participants without a history of ACL injuries (99 male and 44 females) (CON group) and 229 surgically diagnosed ACLR participants (158 males and 71 females). All samples were genotyped for the ACAN: rs1516797, BGN: rs1042103, rs1126499, DCN: rs516115 and VEGFA: rs699947 variants. Main findings included the (i) ACAN rs1516797 G/T genotype which was underrepresented in the CON group (CON: 36%, n=52, ACLR: 49%, n=112, p=0.017, OR=1.68, 95% CI 1.09 to 2.57) when all participants were investigated and (ii) the BGN rs1042103 A allele was significantly under-represented in the male CON group compared to the male ACLR group (CON: 39%, n=78, ACLR: 49%, n=156, p=0.029, OR=1.5, 95% CI 1.05 to 2.15). Furthermore, BGN inferred haplotypes were highlighted with altered ACLR susceptibility. Although the study implicated the ACAN and BGN genes (combination of genotype, allele and haplotype) in modulating ACLR susceptibility, several differences were noted with previous published findings.

4.
Biol Sport ; 34(2): 205-213, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28566815

ABSTRACT

The purpose of the study was to analyse the changes in muscle strength, power, and somatic parameters in elite volleyball players after a specific pre-season training programme aimed at improving jumping and strength performance and injury prevention. Twelve junior female volleyball players participated in an 8-week training programme. Anthropometric characteristics, isokinetic peak torque (PT) single-joint knee flexion (H) and extension (Q) at 60º/s and 180º/s, counter movement jump (CMJ), squat jump (SJ), and reactive strength index (RSI) were measured before and after intervention. Significant moderate effects were found in flexor concentric PT at 60º/s and at 180 º/s in the dominant leg (DL) (18.3±15.1%, likely; 17.8±11.2%, very likely) and in extensor concentric PT at 180º/s (7.4%±7.8%, very likely) in the DL. In the non-dominant leg (NL) significant moderate effects were found in flexor concentric PT at 60º/s and at 180º/s (13.7±11.3%, likely; 13.4±8.0%, very likely) and in extensor concentric PT at 180º/s (10.7±11.5%, very likely). Small to moderate changes were observed for H/QCONV in the DL at 60º/s and 180º/s (15.9±14.1%; 9.6±10.4%, both likely) and in the NL at 60º/s (moderate change, 9.6±11.8%, likely), and small to moderate decreases were detected for H/QFUNC at 180º/s, in both the DL and NL (-7.0±8.3%, likely; -9.5±10.0%, likely). Training-induced changes in jumping performance were trivial (for RSI) to small (for CMJ and SJ). The applied pre-season training programme induced a number of positive changes in physical performance and risk of injury, despite a lack of changes in body mass and composition.

5.
Biomed Res Int ; 2016: 1460892, 2016.
Article in English | MEDLINE | ID: mdl-27652258

ABSTRACT

The study investigated changes in myokines, heat shock proteins, and growth factors in highly ranked, young, male tennis players in response to physical workload during the competitive season and their potential correlations with match scores. Blood collections were carried out at the beginning, the midpoint, and the end of the tournament season. Data analysis revealed a significant increase in interleukin 6 and its inverse correlation with the number of lost games (r = -0.45; 90% CI -0.06 to 0.77). Neither the irisin nor BDNF level changed notably, yet delta changes of irisin across the season significantly correlated with the number of games won. The concentration of HSP27 recorded a small increase (31.2%; 90% CI 10.7 to 55.5, most likely). A negative correlation was noted between IGF-1 and HSP27 concentration at baseline (-0.70 very high; 90% CI -0.89 to -0.31, very likely). At the end of the season IGF-1 correlated positively with the number of games won (r = 0.37 moderate, 90% CI -0.16 to 0.73, likely) but negatively with the number of games lost (r = -0.39, 90% CI -0.14 to -0.74, likely). In conclusion our data indicated that Il-6, irisin, and growth factor IGF-1 may modify overall performance during a long lasting season, expressed in the amount of games won or lost.


Subject(s)
Cumulative Trauma Disorders/immunology , Cytokines/immunology , Fibronectins/immunology , Interleukin-6/immunology , Muscle Proteins/immunology , Tennis/physiology , Adolescent , Aging/immunology , Athletic Performance , Fibronectins/blood , Humans , Interleukin-6/blood , Male , Muscle Proteins/blood , Physical Exertion/immunology , Stress, Physiological/immunology
6.
Biol Sport ; 33(3): 207-14, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27601774

ABSTRACT

Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary.

7.
Biol Sport ; 33(2): 139-44, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27274106

ABSTRACT

The aim of the study was to investigate the effects of eight weeks of regular physical education classes supplemented with high intensity interval cycle exercise (HIIE) or continuous cycle exercises of moderate intensity (CME). Forty-eight collegiate females exercising in two regular physical education classes per week were randomly assigned to two programmes (HIIE; n = 24 or CME; n = 24) of additional (one session of 63 minutes per week) physical activity for 8 weeks. Participants performed HIIE comprising 2 series of 6x10 s sprinting with maximal pedalling cadence and active recovery pedalling with intensity 65%-75% HRmax or performed CME corresponding to 65%-75% HRmax. Before and after the 8-week programmes, anthropometric data and aero- and anaerobic capacity were measured. Two-way ANOVA revealed a significant time main effect for VO2max (p < 0.001), similar improvements being found in both groups (+12% in HIIE and +11% in CME), despite body mass not changing significantly (p = 0.59; +0.4% in HIIE and -0.1% in CME). A significant main time effect was found for relative fat mass (FM) and fat-free mass (FFM) (p < 0.001 and p < 0.001, respectively). A group x time interaction effect was found for relative FM and FFM (p = 0.018 and p = 0.018); a greater reduction in FM and greater increase in FFM were noted in the CME than the HIIE group. Improvements in anaerobic power were observed in both groups (p < 0.001), but it was greater in the HIIE group (interaction effect, p = 0.022). Weight loss is not mandatory for exercise-induced effects on improving aerobic and anaerobic capacity in collegiate females. Eight weeks of regular physical education classes supplemented with CME sessions are more effective in improving body composition than physical education classes supplemented with HIIE sessions. In contrast to earlier, smaller trials, similar improvements in aerobic capacity were observed following physical activity with additional HIIE or CME sessions.

8.
Biol Sport ; 32(2): 143-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26060338

ABSTRACT

Although various intrinsic and extrinsic risk factors for anterior cruciate ligament (ACL) rupture have been identified, the exact aetiology of the injury is not yet fully understood. Type III collagen is an important factor in the repair of connective tissue, and certain gene polymorphisms may impair the tensile strength. The aim of this study was to examine the association of the COL3A1 rs1800255 polymorphism with ACL rupture in Polish male recreational skiers. A total of 321 male Polish recreational skiers were recruited for this study; 138 had surgically diagnosed primary ACL ruptures (ACL-injured group) and 183 were apparently healthy male skiers (control group - CON) who had no self-reported history of ligament or tendon injury. Both groups had a comparable level of exposure to ACL injury. Genomic DNA was extracted from the oral epithelial cells. All samples were genotyped on a real-time polymerase chain reaction instrument. The genotype distribution in the ACL-injured group was significantly different than in CON (respectively: AA=10.1 vs 2.2%, AG=22.5 vs 36.1, GG=67.4 vs 61.8%; p=0.0087). The AA vs AG+GG genotype of COL3A1 (odds ratio (OR)=5.05; 95% confidence interval (CI), 1.62-15.71, p=0.003) was significantly overrepresented in the ACL-injured group compared with CON. The frequency of the A allele was higher in the ACL-injured group (21.4%) compared with CON (20.2%), but the difference was not statistically significant (p=0.72). This study revealed an association between the COL3A1 rs1800255 polymorphism and ACL ruptures in Polish skiers.

9.
Biol Sport ; 32(1): 3-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25729143

ABSTRACT

To investigate the association between multiple single-nucleotide polymorphisms (SNPs), aerobic performance and elite endurance athlete status in Russians. By using GWAS approach, we examined the association between 1,140,419 SNPs and relative maximal oxygen consumption rate ([Formula: see text]O2max) in 80 international-level Russian endurance athletes (46 males and 34 females). To validate obtained results, we further performed case-control studies by comparing the frequencies of the most significant SNPs (with P < 10(-5)-10(-8)) between 218 endurance athletes and opposite cohorts (192 Russian controls, 1367 European controls, and 230 Russian power athletes). Initially, six 'endurance alleles' were identified showing discrete associations with [Formula: see text]O2max both in males and females. Next, case-control studies resulted in remaining three SNPs (NFIA-AS2 rs1572312, TSHR rs7144481, RBFOX1 rs7191721) associated with endurance athlete status. The C allele of the most significant SNP, rs1572312, was associated with high values of [Formula: see text]O2max (males: P = 0.0051; females: P = 0.0005). Furthermore, the frequency of the rs1572312 C allele was significantly higher in elite endurance athletes (95.5%) in comparison with non-elite endurance athletes (89.8%, P = 0.0257), Russian (88.8%, P = 0.007) and European (90.6%, P = 0.0197) controls and power athletes (86.2%, P = 0.0005). The rs1572312 SNP is located on the nuclear factor I A antisense RNA 2 (NFIA-AS2) gene which is supposed to regulate the expression of the NFIA gene (encodes transcription factor involved in activation of erythropoiesis and repression of the granulopoiesis). Our data show that the NFIA-AS2 rs1572312, TSHR rs7144481 and RBFOX1 rs7191721 polymorphisms are associated with aerobic performance and elite endurance athlete status.

10.
Biol Sport ; 31(4): 261-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25435667

ABSTRACT

The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes' responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices - maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) - before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.

11.
Biol Sport ; 31(3): 239-45, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25187676

ABSTRACT

The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.

12.
Biol Sport ; 31(2): 109-13, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24899774

ABSTRACT

The aim of the study was to evaluate the association between swimming performance and the -9/+9 (rs5810761) polymorphism within the BDKRB2 gene in successful competitive swimmers. Best individual swimming results expressed in FINA points achieved at short, middle and long distance events of 157 well-trained Polish swimmers were incorporated into an analysis. Athletes' genotype and allele distributions were analysed in comparison to 230 unrelated sedentary subjects who served as controls with the χ(2) test. All samples were genotyped for the BDKRB2 -9/+9 polymorphism using the polymerase chain reaction (PCR). The effects of genotype on swimming performance were analysed with two-way (3 x 2; genotype x gender) analysis of variance with metrical age as a covariate for each distance specialization. No statistical differences in the genotype and allele frequencies were found in long distance swimmers when compared with the total group of swimmers or controls. The BDKRB2 +9/-9 genotype had no significant effect on swimming performance at short, middle or long distance, regardless of gender. The results of this study do not support the hypothesis that the BDKRB2 -9/+9 polymorphism is associated with swimming performance in Polish swimmers.

13.
Free Radic Res ; 48(8): 948-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24865797

ABSTRACT

Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events.


Subject(s)
Exercise/physiology , Muscle, Skeletal/enzymology , Physical Endurance/genetics , Superoxide Dismutase/genetics , Cohort Studies , Creatine Kinase/blood , Female , Genotype , Humans , Male , Oxidative Stress/physiology , Polymorphism, Genetic , Superoxide Dismutase/metabolism , Young Adult
14.
J Sports Med Phys Fitness ; 54(3): 298-306, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24739292

ABSTRACT

AIM: The purpose of this study was to examine gender differences (GD) in vascular structure and function and their relations to cardiovascular risk factors (CVD) in young, physically active adults. METHODS: Sixty-three apparently healthy, physically active adults (34 women, 29 men), aged 20.2±0.9 years, were involved in the study. RESULTS: Carotid artery intima-media thickness (IMT) values of both internal carotid (CI) and common carotid arteries (CC) were significantly (P<0.01 and P<0.01) higher in men than in women (0.47±0.05 vs. 0.51±0.07 mm and 0.45±0.07 vs. 0.49±0.07 mm, respectively). In women, CC-IMT was positively correlated with body fat mass, height and body mass; and CI-IMT was inversely correlated with systolic and diastolic blood pressure. In men, CI-IMT was positively correlated with body height, diastolic blood pressure and high sensitivity C-reactive protein (hsCRP). Relative values of flow-mediated dilatation (FMD) increased in women by 16.6%, in men by 13.7% after a 5-minute period of forearm ischemia, but absolute FMD was similar in men and women, 0.53±0.25 vs. 0.53±0.14 mm, respectively. CONCLUSION: Values of CC IMT and CI IMT after adjustment to classical CVD risk factors remained strongly diversified with respect to gender, which confirmed the significance of gender as a conditional factor for atherosclerosis assessment. Some GD in vascular structure and function could be eliminated by adjusting for baseline artery diameter and/or subject's somatic features, i.e., body height. This study supports a need for additional studies focusing on understanding GD in vascular characteristics, which could lead to established better quality reference values and comprehend natural history of CVD in view of pathophysiological mechanisms underlying GD.


Subject(s)
Carotid Intima-Media Thickness/statistics & numerical data , Anthropometry , Blood Flow Velocity/physiology , C-Reactive Protein/metabolism , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Cross-Sectional Studies , Dilatation , Female , Humans , Male , Oxygen Consumption/physiology , Risk Factors , Sex Factors , Young Adult
15.
Balkan J Med Genet ; 17(1): 41-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25741214

ABSTRACT

One of the most severe injuries sustained by athletes is rupture of the anterior cruciate ligament (ACL). Recent investigations suggest that a predisposition for ACL rupture may be the result of specific genetic sequence variants. In light of this, we decided to investigate whether the COL12A1 A9285G polymorphism was associated with ACL ruptures in Polish football players. We compared genotypic and allelic frequencies of the COL12A1 A9285G polymorphism in two groups of athletes: 91 male football players (23 ± 3 years) with surgically diagnosed primary ACL ruptures who qualified for ligament reconstruction (cases) and 143 apparently healthy, male football players of the same ethnicity, a similar age category, and a comparable level of exposure to ACL injury, who were without any self-reported history of ligament or tendon injury (controls). DNA samples extracted from the oral epithelial cells were genotyped by using a real-time polymerase chain reaction (Ri-Ti-PCR) method. The genotype distribution in the cases were not different from those in controls (p = 0.70). The frequency of the G allele was lower in the cases (18.1%) but not statistically significant (p = 0.40) when compared with controls (21.3%). Our results are in contradiction to the hypothesis that the COL12A1 A9285G polymorphism is associated with a predisposition for ACL injury. However, these conclusions should be supported with more experimental studies on COL12A1 polymorphisms.

16.
Biol Sport ; 30(4): 249-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24795498

ABSTRACT

The aim of the study was to examine the possible relationship between I/D polymorphism of ACE gene and selected indices of aerobic capacity among male and female athletes practising winter endurance sports. Sixty-six well-trained athletes (female n = 26, male n = 40), aged 18.4 ± 2.8 years, representing winter endurance sports (cross-country skiing, n = 48; biathlon, n = 8; Nordic combined, n = 10) participated in the study. Genotyping for ACE I/D polymorphism was performed using polymerase chain reaction. Maximal oxygen consumption (VO2max), maximal running velocity (Vmax) and running velocity at anaerobic threshold (VAT4) were determined in an incremental test to volitional exhaustion on a motorized treadmill. The ACE genotype had no significant effect on absolute VO2max, relative VO2max (divided by body mass or fat free body mass), VAT4 or Vmax. No interaction effect of gender x ACE genotype was found for each of the examined aerobic capacity indices. ACE gene variation was not found to be a determinant of aerobic capacity in either female or male Polish, well-trained endurance athletes participating in winter sports.

SELECTION OF CITATIONS
SEARCH DETAIL
...