Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 117(8): 2554-63, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23369097

ABSTRACT

Hydration of films of pig gastric mucin was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with a humidity module. As a prerequisite, the water adsorption isotherm of a clean silica surface was determined. Atomic force microscopy was used to characterize the changes occurring on the silica surface after repeated sorption/desorption and cleaning cycles. The water sorption isotherms of several hundreds of nanometers thick mucin films were obtained in QCM-D experiments using analysis of overtone behavior. The results show that the sorption isotherms are not dependent on the film thicknesses and are in good agreement with sorption calorimetric data on mucin in the bulk phase. Moreover, hydration-induced changes of rheological properties of mucin films were investigated using a model-free approach. The ratio of G'/G″ was evaluated as a function of relative humidity. The transition from solidlike behavior to liquidlike behavior was observed in the same humidity range as in sorption calorimetric experiments. Thus, ability of QCM-D to monitor glass transition in biopolymers was demonstrated.


Subject(s)
Gastric Mucins/chemistry , Adsorption , Animals , Gastric Mucins/metabolism , Glass , Phase Transition , Quartz Crystal Microbalance Techniques , Silicon Dioxide/chemistry , Surface Properties , Swine , Water/chemistry
2.
J Phys Chem B ; 116(16): 5047-55, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22455728

ABSTRACT

One of the essential functions of mucous gel is protection of tissues against dehydration. The effect of hydration on the structural and thermodynamic properties of pig gastric mucin (PGM) and bovine submaxillary gland mucin (BSM) have been studied using atomic force microscopy (AFM), sorption, and differential scanning calorimetry (DSC). The analysis of sorption isotherms shows the higher water sorption capacity of PGM compared to BSM at RH levels lower than about 78%. The value of the hydration enthalpy at zero water content at 25 °C for both biopolymers is about -20 kJ/mol. Glass transitions of BSM and PGM occur at RH levels between 60 and 70% for both mucins. AFM indicates the presence of a dumbbell structure as well as a fiber-like structure in PGM samples. The experimental volume of the dry dumbbell molecule obtained by AFM is 3140 ± 340 nm(3). Using DSC data, the amount of nonfreezing water was calculated to be about 0.51 g/g of PGM. The phase diagram of PGM demonstrates two regions of different Tg: dependent and independent of hydration levels. In particular, at mucin concentrations from 0 to 67 wt %, the glass transition occurs at a constant temperature of about -15 °C. At higher concentrations of mucin, Tg is increasing with increasing mucin concentrations.


Subject(s)
Mucins/chemistry , Mucins/metabolism , Submandibular Gland/chemistry , Thermodynamics , Animals , Calorimetry , Cattle , Microscopy, Atomic Force , Protein Conformation , Submandibular Gland/metabolism , Swine , Water/chemistry , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...