Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 87-88: 61-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27178796

ABSTRACT

Aiming at the preparation of efficient, stable on storage and recyclable nanobiocatalysts for enantioselective transesterification, alkaline lipase from Pseudomonas fluorescens was covalently immobilized (up to 8.5wt.%) on functionalized multi-wall carbon nanotubes (f-MWCNTs). f-MWCNTs were synthesized via: (a) (2+1)-cycloaddition of a nitrene to the C-sp(2) nanotube walls (3.2mmolg(-1), a novel synthetic approach) and, (b) oxidative treatments, i.e. Fenton reagent (3.5mmolg(-1)) and nitrating mixture (2.5mmolg(-1)), yielding aminoalkyl-, hydroxyl- and carboxyl-MWCNTs, respectively. Amino- and epoxy- functionalized mesoporous silica (f-SBA-15) were used as the reference supports. Transesterification of vinyl n-butyrate by racemic Solketal with a chromatographically (GC) traced kinetics was selected as the model reaction. The studies revealed that different chemical functionalization of morphologically identical nanotube supports led to various enzyme loadings, catalytic activities and enantioselectivities. MWCNT-NH2-based nanobiocatalyst was found to be the most active composite among all of the tested systems (yield 20%, t=0.5h, 1321Ug(-1)), i.e. 12 times more active than the native enzyme. In turn, lipase immobilized on MWCNT-COOH emerged as the most enantioselective system (ex aequo with SBA-NH2) (eeR=74%, t=0.5h at yield of 3-5%). The activity of the MWCNT-NH2-based nanobiocatalyst after 8 cycles of transesterification dropped to 60% of its initial value, whereas for SBA-NH2-based composite remained unchanged. Importantly, stability on storage was fully maintained for all MWCNT-based nanobiocatalysts or even 'extra-enhanced' for MWCNT-OH.


Subject(s)
Esters/metabolism , Lipase/metabolism , Bacterial Proteins/metabolism , Biocatalysis , Biotechnology , Enzyme Stability , Enzymes, Immobilized/metabolism , Esters/chemistry , Nanotechnology , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Pseudomonas fluorescens/enzymology , Silicon Dioxide , Stereoisomerism
2.
J Biotechnol ; 174: 7-13, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24480569

ABSTRACT

Styrene oxide isomerase (SOI) has previously been shown to be an integral membrane protein performing a highly selective, hydrolytic ring opening reaction of epoxides to yield pure aldehydes. Earlier studies had also shown a high sensitivity of SOIs toward their product phenylacetaldehyde which caused an irreversible inhibition and finally complete loss of activity at higher aldehyde concentrations. Here we report on the covalent immobilization of a styrene oxide isomerase (SOI) on SBA-15 silica carriers. The production of the SOI from a Rhodococcus strain was optimized, the enzyme was enriched and immobilized, and finally the biocatalyst was applied in aqueous as well as in two-phase systems. Linkage of the protein to epoxide or amino groups on the SBA-based carriers led to relatively poor stabilization of the enzyme in an aqueous system. But, improved stability was observed toward organic phases like the non-toxic phthalate-related 1,2-cyclohexane dicarboxylic acid diisononyl ester (Hexamol DINCH) which here to our knowledge was used for the first time in a biotechnological application. With this two-phase system and the immobilized SOI, 1.6-2.0× higher product yields were reached and the lifetime of the biocatalyst was tremendously increased.


Subject(s)
Acetaldehyde/analogs & derivatives , Bacterial Proteins/metabolism , Isomerases/metabolism , Silicon Dioxide/metabolism , Acetaldehyde/metabolism , Biotechnology , Cell Membrane/metabolism , Cyclohexanecarboxylic Acids/chemistry , Enzyme Stability , Rhodococcus/classification , Rhodococcus/enzymology , Solvents/chemistry
3.
Enzyme Microb Technol ; 53(4): 263-70, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23931692

ABSTRACT

In order to produce effective and recyclable catalysts for enantioselective transesterification in the industrial applications, alkaline lipase from Pseudomonas fluorescens was non-covalently immobilised (ca. 6 wt%) on pristine multi-wall carbon nanotubes (MWCNTs) and oxidised MWCNTs (O-MWCNTs) using an adsorption technique. Mesoporous silica modified with n-octyl groups was used as a reference support. Irreversible transesterifications of three vinyl esters (acyl donors) by racemic Solketal with a chromatographically (GC) traced kinetics were selected as model reactions. The undertaken comparative studies revealed that different morphology and chemical functionalisation of the supports led to various enzyme loadings, catalytic activities and enantioselectivities. MWCNT-lipase emerged as the exceptionally active (yield up to 98%, t=1h, 1320 Ug(-1), i.e. 9 times more active than native enzyme) whereas lipase immobilised on O-MWCNTs as the most enantioselective system, particularly for longer acyl chain esters (e.e. up to 72% after 30 min at yield of 20%, 340 Ug(-1)). Moreover, the activity of all nanotube-based catalysts after 10 cycles of transesterification remained practically unchanged. The differences in performance of MWCNTs and O-MWCNTs as solid supports were found to be based on geometry of pores, dominating hydrophobic interactions and absence/presence of the surface polar groups. Due to an excellent activity and reusability of the nanotube-lipase catalysts one can propose (O-)MWCNT as supports of a prospective industrial relevance.


Subject(s)
Enzymes, Immobilized/metabolism , Lipase/metabolism , Pseudomonas fluorescens/enzymology , Bacterial Proteins/metabolism , Biocatalysis , Biotechnology , Esterification , Esters/chemistry , Esters/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...