Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 155(5): 3015-3026, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717207

ABSTRACT

Sound speed is a critical parameter in ocean acoustic studies, as it determines the propagation and interpretation of recorded sounds. The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon the underwater radiated noise of moving vessels measured by a single hydrophone, is proposed. The dataset used for this study consists of Automatic Identification System data and acoustic recordings of maritime vessels transiting through the Santa Barbara Channel between January 2015 and December 2017. The acoustic recordings and vessel descriptors are used as predictors for regressing sound speed for each meter in the top 200 m of the water column, where sound speeds are most variable. Multiple (typically ranging between 4 and 10) transits were recorded each day; therefore, this dataset provides an opportunity to investigate whether multiple acoustic observations can be leveraged together to improve inversion estimates. The proposed single-transit and multi-transit models resulted in depth-averaged root-mean-square errors of 1.79 and 1.55 m/s, respectively, compared to the seasonal average predictions of 2.80 m/s.

2.
Mar Pollut Bull ; 202: 116379, 2024 May.
Article in English | MEDLINE | ID: mdl-38642478

ABSTRACT

To understand the extent of anthropogenic noise in the ocean, it is essential to compare the differences between modern noise environments and their pre-industrial equivalents. The Santa Barbara Channel, off the coast of Southern California, is a corridor for the transportation of goods to and from the busiest shipping ports in the Western hemisphere. Commercial ships introduce high levels of underwater noise into the marine environment. To quantify the extent of noise in the region, we modeled pre-industrial ocean noise levels, driven by wind, and modern ocean noise levels, resulting from the presence of both ships and wind. By comparing pre-industrial and modern underwater noise levels, the low-frequency (50 Hz) acoustic environment was found to be degraded by more than 15 dB. These results can be used to identify regions for noise reduction efforts, as well as to model scenarios to identify those with the greatest potential to support marine conservation efforts.


Subject(s)
Environmental Monitoring , Ships , California , Oceans and Seas , Noise , Noise, Transportation , Wind , Models, Theoretical
3.
PLoS One ; 18(3): e0282677, 2023.
Article in English | MEDLINE | ID: mdl-36928448

ABSTRACT

The container shipping line Maersk undertook a Radical Retrofit to improve the energy efficiency of twelve sister container ships. Noise reduction, identified as a potential added benefit of the retrofitting effort, was investigated in this study. A passive acoustic recording dataset from the Santa Barbara Channel off Southern California was used to compile over 100 opportunistic vessel transits of the twelve G-Class container ships, pre- and post-retrofit. Post-retrofit, the G-Class vessels' capacity was increased from ~9,000 twenty-foot equivalent units (TEUs) to ~11,000 TEUs, which required a draft increase of the vessel by 1.5 m on average. The increased vessel draft resulted in higher radiated noise levels (<2 dB) in the mid- and high-frequency bands. Accounting for the Lloyd's mirror (dipole source) effect, the monopole source levels of the post-retrofit ships were found to be significantly lower (>5 dB) than the pre-retrofit ships in the low-frequency band and the reduction was greatest at low speed. Although multiple design changes occurred during retrofitting, the reduction in the low-frequency band most likely results from a reduction in cavitation due to changes in propeller and bow design.


Subject(s)
Noise , Ships , Sound Spectrography , Acoustics
4.
Sci Rep ; 11(1): 18391, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526540

ABSTRACT

Commercial shipping is the dominant source of low-frequency noise in the ocean. It has been shown that the noise radiated by an individual vessel depends upon the vessel's speed. This study quantified the reduction in source levels (SLs) and sound exposure levels (SELs) for ships participating in two variations of a vessel speed reduction (VSR) program. SLs and SELs of individual ships participating in the program between 2014 and 2017 were statistically lower than non-participating ships (p < 0.001). In the 2018 fleet-based program, there were statistical differences between the SLs and SELs of fleets that participated with varying degrees of cooperation. Significant reductions in SL and SEL relied on cooperation of 25% or more in slowing vessel speed. This analysis highlights how slowing vessel speed to 10 knots or less is an effective method in reducing underwater noise emitted from commercial ships.

5.
PeerJ ; 5: e3761, 2017.
Article in English | MEDLINE | ID: mdl-28929014

ABSTRACT

Oceanic islands are among the most endemically biodiverse ecosystems in the world. They have been adversely impacted by human expansion, which affects regional biodiversity by altering the natural habitats of vulnerable, indigenous species. Birds represent a valuable indicator species of environmental change due to their ability to adapt quickly. Investigating the relationship between environmental change, abundance, and behaviors of birds can help us better anticipate potential impacts to island ecosystems. In addition, we can understand the population trends and restricted ranges of native avifauna, identify the regions needing protection, and assess habitat vulnerability linked to anthropogenic activities. In Mo'orea, French Polynesia, we studied nine passerine bird species using automated acoustic recording devices placed in agricultural, forested, and mixed habitats. Based on call counts per unit time and occupancy modeling, we found evidence that three non-native species preferred agricultural areas and low-canopy cover over dense forested areas. Furthermore, native bird detectability and possibly abundance was significantly lower than non-native birds. Using hierarchical cluster analysis to support inferences regarding behavioral differences, we found that native bird calling activity was negatively associated with non-native bird calling activity. Altogether, these results suggest native bird populations are at risk in all of the habitats studied, but forests serve as a potential refuge.

SELECTION OF CITATIONS
SEARCH DETAIL
...