Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(7): e9113, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35845385

ABSTRACT

Prior to the introduction of white-nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS-affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT-tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from -1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small-footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid-hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid-hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium-high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid-hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species-specific conservation actions.

2.
Sci Rep ; 11(1): 21803, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750401

ABSTRACT

Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species' current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.


Subject(s)
Fabaceae/genetics , Genetic Variation/genetics , Genetics, Population , Microsatellite Repeats/genetics , North America , Phylogeny
3.
Ecol Evol ; 10(8): 3655-3670, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313625

ABSTRACT

Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen-seed dispersal mechanisms. However, in the case of tree species, effective pollen-seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine-scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia-Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (H E = 0.63, H O = 0.34), and moderate genetic differentiation (F ST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia-Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.

4.
Pest Manag Sci ; 76(6): 2049-2057, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31943704

ABSTRACT

BACKGROUND: Indaziflam is an alkylazine herbicide used to control annual bluegrass (Poa annua L.). Several locations in the southeastern USA reported poor annual bluegrass control following treatment with indaziflam during autumn 2015. A series of controlled environment experiments were conducted to confirm putative resistance to indaziflam in annual bluegrass collected from these field locations. RESULTS: Indaziflam (25 g ha-1 ) effectively controlled all putative-resistant annual bluegrass collections when applied preemergence (PRE), but was ineffective when applied early-postemergence (< 2.5 cm plant height; BBCH scale = 1; EPOST). In agarose-based plate assays, EPOST I50 values for putative-resistant collections ranged from 2424 to 4305 pm compared with 633 pm for the herbicide-susceptible control; therefore, resistance indexes (R/S) ranged from 3.8 to 6.8. Resistant collections were not controlled by foramsulfuron, flumioxazin, glyphosate, glufosinate, metribuzin, pronamide, or simazine applied EPOST. Indaziflam content in herbicide-susceptible annual bluegrass was greater than a resistant collection from 0 to 10 days after treatment (DAT). Susceptibility was not restored when resistant collections were treated with indaziflam plus 1-aminobenzotriazole (10 mg L-1 ), tebuconazole (1510 g ha-1 ), or malathion (400 g ha-1 ). CONCLUSIONS: This is a first report of resistance to indaziflam in any plant. Additionally, we confirm that these annual bluegrass collections are resistant to several other herbicidal modes-of-action. It is unclear if this multi-herbicide resistance is due to a single resistance gene, multiple resistance genes, non-target site mechanisms, or a combination thereof. Additional research to better understand resistance mechanisms in these annual bluegrass collections is warranted. © 2020 Society of Chemical Industry.


Subject(s)
Poa , Herbicides , Indenes , Triazines
SELECTION OF CITATIONS
SEARCH DETAIL
...