Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 338(1): 159-67, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15050831

ABSTRACT

The capsid protein of Semliki Forest virus constitutes the N-terminal part of a large viral polyprotein. It consists of an unstructured basic segment (residues 1-118) and a 149 residue serine protease module (SFVP, residues 119-267) comprised of two beta-barrel domains. Previous in vivo and in vitro translation experiments have demonstrated that SFVP folds co-translationally during synthesis of the viral polyprotein and rapidly cleaves itself off the nascent chain. To test whether fast co-translation folding of SFVP is an intrinsic property of the polypeptide chain or whether folding is accelerated by cellular components, we investigated spontaneous folding of recombinant SFVP in vitro. The results show that the majority of unfolded SFVP molecules fold faster than any previously studied two-domain protein (tau=50 ms), and that folding of the N-terminal domain precedes structure formation of the C-terminal domain. This shows that co-translational folding of SFVP does not require additional cellular components and suggests that rapid folding is the result of molecular evolution towards efficient virus biogenesis.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid/chemistry , Peptide Hydrolases/metabolism , Protein Folding , Protein Processing, Post-Translational , Semliki forest virus/chemistry , Capsid Proteins/genetics , Humans , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...