Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38676229

ABSTRACT

Positioning based on Global Navigation Satellite Systems (GNSSs) in urban environments always suffers from multipath and Non-Line-of-Sight (NLoS) effects. In such conditions, the GNSS pseudorange measurements can be affected by biases disrupting the GNSS-based applications. Many efforts have been devoted to detecting and mitigating the effects of multipath/NLoS, but the identification and classification of such events are still challenging. This research proposes a method for the post-processing estimation of pseudorange biases resulting from multipath/NLoS effects. Providing estimated pseudorange biases due to multipath/NLoS effects serves two main purposes. Firstly, machine learning-based techniques can leverage accurately estimated pseudorange biases as training data to detect and mitigate multipath/NLoS effects. Secondly, these accurately estimated pseudorange biases can serve as a benchmark for evaluating the effectiveness of the methods proposed to detect multipath/NLoS effects. The estimation is achieved by extracting the multipath/NLoS biases from pseudoranges using a clustering algorithm named Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The performance is demonstrated using two real-world data collections in multipath/NLoS scenarios for both static and dynamic conditions. Since there is no ground truth for the pseudorange biases due to the multipath/NLoS scenarios, the proposed method is validated based on the positioning performance. Positioning solutions are computed by subtracting the estimated biases from the raw pseudoranges and comparing them to the ground truth.

2.
Front Robot AI ; 9: 950427, 2022.
Article in English | MEDLINE | ID: mdl-36035869

ABSTRACT

In the last decades, the increasing complexity of the fusion of proprioceptive and exteroceptive sensors with Global Navigation Satellite System (GNSS) has motivated the exploration of Artificial Intelligence related strategies for the implementation of the navigation filters. In order to meet the strict requirements of accuracy and precision for Intelligent Transportation Systems (ITS) and Robotics, Bayesian inference algorithms are at the basis of current Positioning, Navigation, and Timing (PNT). Some scientific and technical contributions resort to Sequential Importance Resampling (SIR) Particle Filters (PF) to overcome the theoretical weaknesses of the more popular and efficient Kalman Filters (KFs) when the application relies on non-linear measurements models and non-Gaussian measurements errors. However, due to its higher computational burden, SIR PF is generally discarded. This paper presents a methodology named Multiple Weighting (MW) that reduces the computational burden of PF by considering the mutual information provided by the input measurements about the unknown state. An assessment of the proposed scheme is shown through an application to standalone GNSS estimation as a baseline of more complex multi-sensors, integrated solutions. By relying on the a-priori knowledge of the relationship between states and measurements, a change in the conventional PF routine allows performing a more efficient sampling of the posterior distribution. Results show that the proposed strategy can achieve any desired accuracy with a considerable reduction in the number of particles. Given a fixed and reasonable available computational effort, the proposed scheme allows for an accuracy improvement of the state estimate in the range of 20-40%.

SELECTION OF CITATIONS
SEARCH DETAIL
...