Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854034

ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.

2.
Genet Med ; 26(7): 101141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629401

ABSTRACT

PURPOSE: Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS: We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS: We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION: We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.


Subject(s)
Genes, Lethal , Genetic Diseases, Inborn , Phenotype , Humans , Animals , Mice , Genetic Diseases, Inborn/genetics , Databases, Genetic , Disease Models, Animal , Genes, Essential/genetics
3.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260283

ABSTRACT

Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.

4.
Front Genet ; 6: 116, 2015.
Article in English | MEDLINE | ID: mdl-25870609

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most frequent events in oncology. Advances in molecular understanding of the processes of carcinogenesis have shed light on the fundamental mechanisms of tumorigenesis. Currently, knowledge of the molecular basis of its pathogenesis is being used to improve patient care and devise more rational therapeutics. Still, the role played by the mutation patterns of mutated genes in the clinical outcomes that patients on pharmacological treatment receive remains unclear. In this study, we propose to analyze the different clinical outcomes and disease prognosis of patients with stage IV CRC treated with FOLFOX chemotherapy (fluorouracil, leucovorin, oxaliplatin) based on different Kirsten ras (KRAS) mutation patterns. METHODS: In this cohort study, 148 patients diagnosed with stage IV CRC and treated with FOLFOX were studied between 2008 and 2013. Mutational status of KRAS was determined. Progression-free survival (PFS) and overall survival (OS) were measured, and all deaths were verified. Survival analysis was performed using Kaplan-Meier analysis, comparison among groups was analyzed using the log-rank test, and multivariate analysis was conducted using Cox proportional-hazards regression. RESULTS: Among a total of 148 patients, 48 (32%) had mutated KRAS, 77% at codon 12 and 23% at codon 13. The PFS was significantly worse in the mutant KRAS patients in comparison to wild type KRAS patients (p < 0.05). The OS did not show significant differences between the two groups. Multivariate analysis showed KRAS mutation as an independent negative prognostic factor for PFS. Among the various subtypes of KRAS mutation, G12D was significantly associated with a poor prognosis in PFS (p = 0.02). CONCLUSION: In our population, the KRAS mutation had an adverse impact on the prognosis for stage IV CRC patients treated with the FOLFOX regimen.

SELECTION OF CITATIONS
SEARCH DETAIL
...