Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 60(1): 183-9, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11408613

ABSTRACT

Memantine is a blocker of Ca(2+)-permeable glutamate and nicotinic acetylcholine receptors (nAChR). We investigated the action of memantine on cholinergic synaptic transmission at cochlear outer hair cells (OHCs). At this inhibitory synapse, hyperpolarization of the postsynaptic cell results from opening of SK-type Ca(2+)-activated K(+) channels via a highly Ca(2+)-permeable nAChR containing the alpha 9 subunit. We show that inhibitory postsynaptic currents recorded from OHCs were reversibly blocked by memantine with an IC(50) value of 16 microM. RT-PCR revealed that a newly cloned nAChR subunit, alpha 10, is expressed in OHCs. In contrast to homomeric expression, coexpression of alpha 9 and alpha 10 subunits in Xenopus laevis oocytes resulted in robust acetylcholine-induced currents, indicating that the OHC nAChR may be an alpha 9/alpha 10 heteromer. Accordingly, nAChR currents evoked by application of the ligand to OHCs and currents through alpha 9/alpha 10 were blocked by memantine with a similar IC(50) value of about 1 microM. Memantine block of alpha 9/alpha 10 was moderately voltage dependent. The lower efficacy of memantine for inhibition of inhibitory postsynaptic currents (IPSCs) most probably results from a blocking rate that is slow with respect to the short open time of the receptor channels during an IPSC. Thus, synaptic transmission in OHCs is inhibited by memantine block of Ca(2+) influx through nAChRs. Importantly, prolonged receptor activation and consequently massive Ca(2+) influx, as might occur under pathological conditions, is blocked at low micromolar concentrations, whereas the fast IPSCs initiated by short receptor activation are only blocked at concentrations above 10 microM.


Subject(s)
Cochlea/drug effects , Hair Cells, Auditory, Outer/drug effects , Memantine/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Animals , Cochlea/metabolism , Dopamine Agents/pharmacology , Efferent Pathways/drug effects , Hair Cells, Auditory, Outer/metabolism , In Vitro Techniques , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, Nicotinic/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...