Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecol Evol ; 8(9): 4721-4730, 2018 May.
Article in English | MEDLINE | ID: mdl-29760911

ABSTRACT

Although microbial communities have been shown to vary among plant genotypes in a number of experiments in terrestrial ecosystems, relatively little is known about this relationship under natural conditions and outside of select model systems. We reasoned that a salt marsh ecosystem, which is characterized by twice-daily flooding by tides, would serve as a particularly conservative test of the strength of plant-microbial associations, given the high degree of abiotic regulation of microbial community assembly resulting from alternating periods of inundation and exposure. Within a salt marsh in the northeastern United States, we characterized genotypes of the foundational plant Spartina alterniflora using microsatellite markers, and bacterial metagenomes within marsh soil based on pyrosequencing. We found significant differences in bacterial community composition and diversity between bulk and rhizosphere soil, and that the structure of rhizosphere communities varied depending on the growth form of, and genetic variation within, the foundational plant S. alterniflora. Our results indicate that there are strong plant-microbial associations within a natural salt marsh, thereby contributing to a growing body of evidence for a relationship between plant genotypes and microbial communities from terrestrial ecosystems and suggest that principles of community genetics apply to this wetland type.

2.
PLoS One ; 13(2): e0192234, 2018.
Article in English | MEDLINE | ID: mdl-29389960

ABSTRACT

We explored the nature and impact of competitive interactions between the salt marsh foundational plant Spartina alterniflora and invasive Phragmites australis in New England under varying levels of anthropogenic influence from nutrient loading and temperature warming. Plants were grown with and without competition in mesocosms over a four-month growing season. Mesocosms were split evenly among three levels of nutrient additions and two temperatures varying by an average of ~3° C, manipulated using small greenhouses. We measured aboveground productivity as total biomass, numbers of new stems, and mean stem height. Nutrient enrichment increased all growth parameters, while competition generally reduced aboveground biomass and the production of new stems in both species. Most importantly, smooth cordgrass suffered no negative consequences of competition when no nutrients were added and temperature was elevated. The results of this study suggest that minimizing nutrient loading into coastal marshes could be an important factor in slowing the spread of common reed into the low marsh zone of New England salt marshes as global temperatures continue to warm.


Subject(s)
Poaceae/chemistry , Temperature , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...