Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37759625

ABSTRACT

The most common approach in transcriptomics (RNA-seq and microarrays) is differential gene expression analysis (DGEA) [...].

2.
Genes (Basel) ; 14(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37761874

ABSTRACT

BACKGROUND: Stem cells have been associated with self-renewing and plasticity and have been investigated in various odontogenic lesions in association with their pathogenesis and biological behavior. We aim to provide a systematic review of stem cell markers' expression in odontogenic tumors and cysts. METHODS: The literature was searched through the MEDLINE/PubMed, EMBASE via OVID, Web of Science, and CINHAL via EBSCO databases for original studies evaluating stem cell markers' expression in different odontogenic tumors/cysts, or an odontogenic disease group and a control group. The studies' risk of bias (RoB) was assessed via a Joanna Briggs Institute Critical Appraisal Tool. Meta-analysis was conducted for markers evaluated in the same pair of odontogenic tumors/cysts in at least two studies. RESULTS: 29 studies reported the expression of stem cell markers, e.g., SOX2, OCT4, NANOG, CD44, ALDH1, BMI1, and CD105, in various odontogenic lesions, through immunohistochemistry/immunofluorescence, polymerase chain reaction, flow cytometry, microarrays, and RNA-sequencing. Low, moderate, and high RoBs were observed in seven, nine, and thirteen studies, respectively. Meta-analysis revealed a remarkable discriminative ability of SOX2 for ameloblastic carcinomas or odontogenic keratocysts over ameloblastomas. CONCLUSION: Stem cells might be linked to the pathogenesis and clinical behavior of odontogenic pathologies and represent a potential target for future individualized therapies.

3.
Cells ; 12(3)2023 01 21.
Article in English | MEDLINE | ID: mdl-36766730

ABSTRACT

Genes with similar expression patterns in a set of diverse samples may be considered coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the global coexpression landscape of human genes. The website is based on the hierarchical clustering of 55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq samples of healthy individuals, which were selected as the best representative samples of each tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies, biological pathways, protein families, and diseases, while also being unique in revealing enriched transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis. HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological processes that can be experimentally validated. It offers a simple and intuitive website design and user interface, as well as an API endpoint.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Genes , Humans , RNA-Seq , Transcription Factors , Genes/genetics , Genes/physiology
4.
Biology (Basel) ; 11(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-36101400

ABSTRACT

Gene coexpression analysis constitutes a widely used practice for gene partner identification and gene function prediction, consisting of many intricate procedures. The analysis begins with the collection of primary transcriptomic data and their preprocessing, continues with the calculation of the similarity between genes based on their expression values in the selected sample dataset and results in the construction and visualisation of a gene coexpression network (GCN) and its evaluation using biological term enrichment analysis. As gene coexpression analysis has been studied extensively, we present most parts of the methodology in a clear manner and the reasoning behind the selection of some of the techniques. In this review, we offer a comprehensive and comprehensible account of the steps required for performing a complete gene coexpression analysis in eukaryotic organisms. We comment on the use of RNA-Seq vs. microarrays, as well as the best practices for GCN construction. Furthermore, we recount the most popular webtools and standalone applications performing gene coexpression analysis, with details on their methods, features and outputs.

5.
STAR Protoc ; 3(1): 101208, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243384

ABSTRACT

Coexpressed genes tend to participate in related biological processes. Gene coexpression analysis allows the discovery of functional gene partners or the assignment of biological roles to genes of unknown function. In this protocol, we describe the steps necessary to create a gene coexpression tree for Arabidopsis thaliana, using publicly available Affymetrix CEL microarray data. Because the computational analysis described here is highly dependent on sample quality, we detail an automatic quality control approach. For complete details on the use and execution of this protocol, please refer to Zogopoulos et al. (2021).


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling/methods , Genetic Testing , Oligonucleotide Array Sequence Analysis/methods
6.
iScience ; 24(8): 102848, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34381973

ABSTRACT

Gene coexpression analysis refers to the discovery of sets of genes which exhibit similar expression patterns across multiple transcriptomic data sets, such as microarray experiment data of public repositories. Arabidopsis Coexpression Tool (ACT), a gene coexpression analysis web tool for Arabidopsis thaliana, identifies genes which are correlated to a driver gene. Primary microarray data from ATH1 Affymetrix platform were processed with Single-Channel Array Normalization algorithm and combined to produce a coexpression tree which contains ∼21,000 A. thaliana genes. ACT was developed to present subclades of coexpressed genes, as well as to perform gene set enrichment analysis, being unique in revealing enriched transcription factors targeting coexpressed genes. ACT offers a simple and user-friendly interface producing working hypotheses which can be experimentally verified for the discovery of gene partnership, pathway membership, and transcriptional regulation. ACT analyses have been successful in identifying not only genes with coordinated ubiquitous expressions but also genes with tissue-specific expressions.

SELECTION OF CITATIONS
SEARCH DETAIL
...