Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Mol Psychiatry ; 28(5): 1946-1959, 2023 May.
Article in English | MEDLINE | ID: mdl-36631597

ABSTRACT

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

3.
Biol Psychiatry ; 92(1): 81-95, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34865853

ABSTRACT

BACKGROUND: ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS: Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS: RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS: Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.


Subject(s)
Autistic Disorder , Intellectual Disability , Tauopathies , Animals , Autistic Disorder/pathology , Brain/metabolism , Evoked Potentials, Visual , Female , Gene Expression , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Male , Mice , Nerve Tissue Proteins/genetics , Tauopathies/metabolism , tau Proteins
4.
J Neurol ; 269(4): 2262-2263, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34553257
5.
Front Cell Neurosci ; 15: 640724, 2021.
Article in English | MEDLINE | ID: mdl-33708074

ABSTRACT

Background: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it's model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia. Methods: We used the transfer EAE model to examine the direct effects of training on the CNS. Healthy mice performed HICT by treadmill running, followed by injection of encephalitogenic proteolipid (PLP)-reactive T-cells to induce EAE. EAE severity was assessed clinically and pathologically. Brain microglia from sedentary (SED) and HICT healthy mice, as well as 5-days post EAE induction (before the onset of disease), were analyzed ex vivo for reactive oxygen species (ROS) and nitric oxide (NO) formation, mRNA expression of M1/M2 markers and neurotrophic factors, and secretion of cytokines and chemokines. Results: Transfer of encephalitogenic T-cells into HICT mice resulted in milder EAE, compared to sedentary mice, as indicated by reduced clinical severity, attenuated T-cell, and neurotoxic macrophage/microglial infiltration, and reduced loss of myelin and axons. In healthy mice, HICT reduced the number of resident microglia without affecting their profile. Isolated microglia from HICT mice after transfer of encephalitogenic T-cells exhibited reduced ROS formation and released less IL-6 and monocyte chemoattractant protein (MCP) in response to PLP-stimulation. Conclusions: These findings point to the critical role of training intensity in neuroprotection. HICT protects the CNS against autoimmune neuroinflammation by reducing microglial-derived ROS formation, neurotoxicity, and pro-inflammatory responses involved in the propagation of autoimmune neuroinflammation.

6.
Ann Clin Transl Neurol ; 8(1): 190-200, 2021 01.
Article in English | MEDLINE | ID: mdl-33285042

ABSTRACT

BACKGROUND: Studies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms. OBJECTIVE: To compare the effects and mechanism of immune modulation of high intensity continuous training (HICT) versus high intensity interval training (HIIT) on systemic autoimmunity in EAE. METHODS: We used the proteolipid protein (PLP)-induced transfer EAE model to examine training effects on the systemic autoimmune response. Healthy mice performed HICT or HIIT by running on a treadmill. Lymph-node (LN)-T cells from PLP-immunized trained- versus sedentary donor mice were transferred to naïve recipients and EAE clinical and pathological severity were assessed. LN cells derived from donor trained and sedentary PLP-immunized mice were analyzed in vitro for T-cell activation and proliferation, immune cell profiling, and cytokine mRNA levels and cytokine secretion measurements. RESULTS: Both HICT and HIIT attenuated the encephalitogenicity of PLP-reactive T cells, as indicated by reduced EAE clinical severity and inflammation and tissue pathology in the central nervous system, following their transfer into recipient mice. HICT caused a marked inhibition of PLP-induced T-cell proliferation without affecting the T-cell profile. In contrast, HIIT did not alter T-cell proliferation, but rather inhibited polarization of T cells into T-helper 1 and T-helper 17 autoreactive populations. INTERPRETATION: HICT and HIIT attenuate systemic autoimmunity and T cell encephalitogenicity by distinct immunomodulatory mechanisms.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Animals , Female , Lymph Nodes/immunology , Mice , Spinal Cord/immunology , Spinal Cord/pathology
7.
Neurol Res ; 42(3): 209-221, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32048570

ABSTRACT

Objectives: Natalizumab (NTZ), a treatment indicated for patients with highly active Relapsing - Remitting Multiple Sclerosis (RRMS), is known to induce increased relative frequency of lymphocytes. Progressive Multifocal Leukoencephalitis (PML) is a rare but serious adverse event related to NTZ. Moreover, reduced L-selectin (CD62L) expression in T-cells in cryopreserved samples of patients with RRMS under NTZ has been proposed as a biomarker of pre-PML state. We explore the association between L-selectin expression in T-cells and hematological parameters in freshly processed samples of patients with RRMS under NTZ.Methods: We studied L-selectin expression in patients with: RRMS under NTZ (n=34), fingolimod (FTY, n=14), interferon-beta (IFNß, n=22), glatiramer acetate (GA, N=17); in 9 patients with secondary progressive (SP) MS and in 6 healthy controls. Twenty-two patients under NTZ and 6 patients under FTY were followed for 18 months. One NTZ-treated patient developed PML during the study.Results: Patients under NTZ exhibited increased relative frequency of lymphocytes (40.02±1.45) compared to patients under first-line treatment (30.57±1.68, p<0.001) and to patients with SPMS (29±1.56, p=0.02), and a lower mean L-selectin expression in (69.39±1.73) compared to patients under first-line treatment (79.1±1.17, p=0.003). A negative correlation between the relative frequency of CD4+CD62L+ T-cells and the absolute lymphocyte counts (Pearson's r=0.367, p=0.033) was observed.Discussion: We hereby provide mechanistic insight in a possible pathway implicated in NTZ-related PML risk. These results further underline the need for thorough validation of L-selectin expression in T-cells as a potential pre-PML biomarker.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Immunologic Factors/adverse effects , L-Selectin/metabolism , Leukoencephalopathy, Progressive Multifocal/chemically induced , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab/adverse effects , Adult , Brain/drug effects , Brain/pathology , Female , Humans , Leukoencephalopathy, Progressive Multifocal/immunology , Leukoencephalopathy, Progressive Multifocal/pathology , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...