Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257026

ABSTRACT

The demand for eco-friendly packaging materials has urged researchers to look for alternatives to petroleum-based polymers. In this regard, paper-based products have turned out to be a promising choice; however, their weak resistance to water has limited their application. The use of various additives to enhance paper's moisture resistance is a common practice. However, considering the growing global agenda for sustainable development, the search for new bio-based paper additives has become increasingly important. This study investigated the potential synergistic impact of the addition of nanofibrillated cellulose (NFC) and chitosan additives (CHIT) to different fiber combinations to improve paper's properties, in particular, their wet strength. The efficacy of the additive application order was examined and was found to be crucial in achieving the desired outcomes. The results showed that incorporating CHIT after NFC enhanced the paper's tensile and burst indicators, as well as the paper stretch in the dry state, by 35-70%, 35-55%, and 20-35%, respectively. In addition, the tensile index and stretch in the wet state improved 9-13 times and 2.5-5.5 times over, respectively. The air permeability decreased 2.5-12 times over. These findings demonstrate that the sequential addition of the NFC and CHIT additives yield a greater enhancement of paper's properties than using each additive separately.

2.
Polymers (Basel) ; 15(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37688174

ABSTRACT

This study investigates the mycelial biomass production and chitosan extraction potential of various Basidiomycota strains, including Heterobasidion annosum, Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor, and Lentinus lepideus. Both submerged fermentation (SF) and solid-state fermentation (SSF) methods were employed. The chitosan yield in basidiocarps of Pleurotus ostreatus, Agaricus bisporus, and Ganoderma applanatum was also evaluated as a reference material. The chitosan extracted from fungal cells was characterized using elemental analyses and FTIR spectroscopy. Among the cultivated strains, P. chrysosporium exhibited the highest mycelial biomass concentration in SF (1.03 g 100 mL-1) after 14 days, while T. versicolor achieved the highest biomass concentration in SSF (3.65 g 100 mL-1). The highest chitosan yield was obtained from the mycelium of P. chrysosporium (0.38%) and T. versicolor (0.37%) in shaken SF. Additionally, commercially cultivated A. bisporus demonstrated the highest chitosan yield in fungal fruiting bodies (1.7%). The extracted chitosan holds potential as a functional biopolymer additive for eco-friendly materials, serving as an alternative to synthetic wet and dry strength agents in packaging materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...