Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Science ; 379(6634): eabn8671, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36137011

ABSTRACT

Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.

3.
Sci Rep ; 11(1): 5125, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664290

ABSTRACT

Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth's astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.

4.
Nat Astron ; 20202020.
Article in English | MEDLINE | ID: mdl-33681472

ABSTRACT

Carbonaceous chondrite meteorites record the earliest stages of Solar System geo-logical activities and provide insight into their parent bodies' histories. Some carbonaceous chondrites are volumetrically dominated by hydrated minerals, providing evidence for low temperature and pressure aqueous alteration1. Others are dominated by anhydrous minerals and textures that indicate high temperature metamorphism in the absence of aqueous fluids1. Evidence of hydrous metamorphism at intermediate pressures and temperatures in carbonaceous chondrite parent bodies has been virtually absent. Here we show that an ungrouped, aqueously altered carbonaceous chondrite fragment (numbered 202) from the Almahata Sitta (AhS) meteorite contains an assemblage of minerals, including amphibole, that reflect fluid-assisted metamorphism at intermediate temperatures and pressures on the parent asteroid. Amphiboles are rare in carbonaceous chondrites, having only been identified previously as a trace component in Allende (CV3oxA) chondrules2. Formation of these minerals requires prolonged metamorphism in a large (~640-1800 km diameter), unknown asteroid. Because Allende and AhS 202 represent different asteroidal parent bodies, intermediate conditions may have been more widespread in the early Solar System than recognized from known carbonaceous chondrite meteorites, which are likely a biased sampling.

5.
Meteorit Planet Sci ; 54(5): 1069-1091, 2019 May.
Article in English | MEDLINE | ID: mdl-31080342

ABSTRACT

In a consortium analysis of a large particle captured from the coma of comet 81P/Wild 2 by the Stardust spacecraft, we report the discovery of a field of fine-grained material (FGM) in contact with a large sulfide particle. The FGM was partially located in an embayment in the sulfide. As a consequence, some of the FGM appears to have been protected from damage during hypervelocity capture in aerogel. Some of the FGM particles are indistinguishable in their characteristics from common components of chondritic-porous interplanetary dust particles (CP-IDPs), including glass with embedded metals and sulfides (GEMS) and equilibrated aggregates (EAs). The sulfide exhibits surprising Ni-rich lamellae, which may indicate that this particle experienced a long-duration heating event after its formation but before incorporation into Wild 2.

6.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Article in English | MEDLINE | ID: mdl-28554979

ABSTRACT

Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'.

7.
Science ; 333(6046): 1119-21, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21868669

ABSTRACT

A single grain (~3 micrograms) returned by the Hayabusa spacecraft was analyzed by neutron activation analysis. This grain is mainly composed of olivine with minor amounts of plagioclase, troilite, and metal. Our results establish that the Itokawa sample has similar chemical characteristics (iron/scandium and nickel/cobalt ratios) to chondrites, confirming that this grain is extraterrestrial in origin and has primitive chemical compositions. Estimated iridium/nickel and iridium/cobalt ratios for metal in the Itokawa samples are about five times lower than CI carbonaceous chondrite values. A similar depletion of iridium was observed in chondrule metals of ordinary chondrites. These metals must have condensed from the nebular where refractory siderophile elements already condensed and were segregated.

8.
Science ; 333(6046): 1121-5, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21868670

ABSTRACT

The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe(2+).

9.
Nature ; 458(7237): 485-8, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19325630

ABSTRACT

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995 nm wavelength range, and designated 2008 TC(3) (refs 4-6). It subsequently hit the Earth. Because it exploded at 37 km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95 kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

10.
Science ; 309(5738): 1233-6, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-16109878

ABSTRACT

Osmium extracted from unequilibrated bulk chondrites has isotope anomalies consistent with an insoluble s-process carrier, termed Os(i) here. Osmium from metamorphosed bulk chondrites does not have isotope anomalies, implying that the Os(i) carrier was destroyed by metamorphism. The isotopic homogeneity of metamorphosed bulk chondrites is consistent with extremely effective mixing of presolar grains from varied sources in the nebula. Osmium in the Os(i) carrier is likely from nucleosynthetic sites with a neutron density about two to four times as high as that of the average solar s-process Os.

11.
Science ; 293(5538): 2234-6, 2001 Sep 21.
Article in English | MEDLINE | ID: mdl-11520950

ABSTRACT

A new type of carbonaceous chondrite, the Tagish Lake meteorite, exhibits a reflectance spectrum similar to spectra observed from the D-type asteroids, which are relatively abundant in the outer solar system beyond the main asteroid belt and have been inferred to be more primitive than any known meteorite. Until the Tagish Lake fall, these asteroids had no analog in the meteorite collections. The Tagish Lake meteorite is a carbon-rich (4 to 5 weight %), aqueously altered carbonaceous chondrite and contains high concentrations of presolar grains and carbonate minerals, which is consistent with the expectation that the D-type asteroids were originally made of primitive materials and did not experience any extensive heating.


Subject(s)
Meteoroids , Minor Planets , Canada , Carbon/analysis , Carbonates/analysis , Spectrum Analysis
12.
Science ; 290(5490): 320-5, 2000 Oct 13.
Article in English | MEDLINE | ID: mdl-11030647

ABSTRACT

The preatmospheric mass of the Tagish Lake meteoroid was about 200,000 kilograms. Its calculated orbit indicates affinity to the Apollo asteroids with a semimajor axis in the middle of the asteroid belt, consistent with a linkage to low-albedo C, D, and P type asteroids. The mineralogy, oxygen isotope, and bulk chemical composition of recovered samples of the Tagish Lake meteorite are intermediate between CM and CI meteorites. These data suggest that the Tagish Lake meteorite may be one of the most primitive solar system materials yet studied.

13.
Orig Life Evol Biosph ; 29(5): 521-45, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10573692

ABSTRACT

The ability of living organisms to survive on the smaller bodies in our solar system is examined. The three most significant sterilizing effects include ionizing radiation, prolonged extreme vacuum, and relentless thermal inactivation. Each could be effectively lethal, and even more so in combination, if organisms at some time resided in the surfaces of airless small bodies located near or in the inner solar system. Deep within volatile-rich bodies, certain environments theoretically might provide protection of dormant organisms against these sterilizing factors. Sterility of surface materials to tens or hundreds of centimeters of depth appears inevitable, and to greater depths for bodies which have resided for long periods sunward of about 2 A.U.


Subject(s)
Meteoroids , Minor Planets , Environment , Models, Biological , Vacuum
14.
Science ; 285(5432): 1377-9, 1999 Aug 27.
Article in English | MEDLINE | ID: mdl-10464091

ABSTRACT

Crystals of halite and sylvite within the Monahans (1998) H5 chondrite contain aqueous fluid inclusions. The fluids are dominantly sodium chloride-potassium chloride brines, but they also contain divalent cations such as iron, magnesium, or calcium. Two possible origins for the brines are indigenous fluids flowing within the asteroid and exogenous fluids delivered into the asteroid surface from a salt-containing icy object.


Subject(s)
Meteoroids , Minor Planets , Sodium Chloride , Water , Crystallization , Mass Spectrometry , Potassium Chloride , Spectrum Analysis, Raman , Temperature , Texas
15.
Science ; 261(5124): 1016-8, 1993 Aug 20.
Article in English | MEDLINE | ID: mdl-17739619

ABSTRACT

Reflectance spectra (0.3 to 2.6 micrometers) of 14 C, G, B, and F asteroids and 21 carbonaceous chondrite powders are compared in detail. Only three thermally metamorphosed CM-Cl chondrites that have a weak ultraviolet absorption are shown to have close counterparts among those asteroids. Reflectance spectra of heated Murchison CM2 chondrite are compared with the average C and G type asteroid spectra. Murchison heated at 600 degrees to 1000 degrees C exhibits a similar weak ultraviolet absorption and provides the best analog for those spectra. Comparison of ultraviolet absorption strengths between 160 C, G, B, and F asteroids and carbonaceous chondrites suggests that surface minerals of most of those asteroids are thermally metamorphosed at temperatures around 600 degrees to 1000 degrees C.

16.
Science ; 237(4821): 1466-8, 1987 Sep 18.
Article in English | MEDLINE | ID: mdl-17816788

ABSTRACT

Criteria are described by which refractory interplanetary dust particles (IDPs) can be differentiated from the products of spacecraft debris. These criteria have been used to discover and characterize IDPs that are composed predominantly of refractory phases. Two of these particles contain hibonite, perovskite, spinel, refractory glass, and a melilite; only hibonite was identified within a third. The grain size for all particles ranges from 0.05 to 1 micrometer, so that they are much finer grained than the refractory calcium- and aluminum-rich inclusions in meteorites. The glass-containing refractory IDPs may be primitive nebular condensates that never completely crystallized and thus have been preserved extant.

SELECTION OF CITATIONS
SEARCH DETAIL
...