Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004422

ABSTRACT

Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.

2.
Heliyon ; 9(5): e15539, 2023 May.
Article in English | MEDLINE | ID: mdl-37180885

ABSTRACT

Background: miR-96-5p is a highly expressed microRNA in the retina of subjects with diabetes. The INS/AKT/GLUT4 signaling axis is the main cell signaling pathway of glucose uptake in cells. Here, we investigated the role of miR-96-5p in this signaling pathway. Methods: Expression levels of miR-96-5p and its target genes were measured under high glucose conditions, in the retina of streptozotocin-induced diabetic mice, in the retina of AAV-2-eGFP-miR-96 or GFP intravitreal injected mice and in the retina of human donors with diabetic retinopathy (DR). MTT, wound healing, tube formation, Western blot, TUNEL, angiogenesis assays and hematoxylin-eosin staining of the retinal sections were performed. Results: miR-96-5p expression was increased under high glucose conditions in mouse retinal pigment epithelial (mRPE) cells, in the retina of mice receiving AAV-2 carrying miR-96 and STZ-treated mice. Expression of the miR-96-5p target genes related to the INS/AKT/GLUT4 signaling pathway was reduced following miR-96-5p overexpression. mmu-miR-96-5p expression decreased cell proliferation and thicknesses of retinal layers. Cell migration, tube formation, vascular length, angiogenesis, and TUNEL-positive cells were increased. Conclusions: In in vitro and in vivo studies and in human retinal tissues, miR-96-5p regulated the expression of the PIK3R1, PRKCE, AKT1, AKT2, and AKT3 genes in the INS/AKT axis and some genes involved in GLUT4 trafficking, such as Pak1, Snap23, RAB2a, and Ehd1. Because disruption of the INS/AKT/GLUT4 signaling axis causes advanced glycation end product accumulation and inflammatory responses, the inhibition of miR-96-5p expression could ameliorate DR.

3.
Sci Rep ; 11(1): 13731, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215768

ABSTRACT

Bioethanol produced by fermentative microorganisms is regarded as an alternative to fossil fuel. Bioethanol to be used as a viable energy source must be produced cost-effectively by removing expense-intensive steps such as the enzymatic hydrolysis of substrate. Consolidated bioprocessing (CBP) is believed to be a practical solution combining saccharification and fermentation in a single step catalyzed by a microorganism. Bacillus subtills with innate ability to grow on a diversity of carbohydrates seems promising for affordable CBP bioethanol production using renewable plant biomass and wastes. In this study, the genes encoding alcohol dehydrogenase from Z. mobilis (adhZ) and S. cerevisiae (adhS) were each used with Z. mobilis pyruvate decarboxylase gene (pdcZ) to create ethanologenic operons in a lactate-deficient (Δldh) B. subtilis resulting in NZ and NZS strains, respectively. The S. cerevisiae adhS caused significantly more ethanol production by NZS and therefore was used to make two other operons including one with double copies of both pdcZ and adhS and the other with a single pdcZ but double adhS genes expressed in N(ZS)2 and NZS2 strains, respectively. In addition, two fusion genes were constructed with pdcZ and adhS in alternate orientations and used for ethanol production by the harboring strains namely NZ:S and NS:Z, respectively. While the increase of gene dosage was not associated with elevated carbon flow for ethanol production, the fusion gene adhS:pdcZ resulted in a more than two times increase of productivity by strain NS:Z as compared with NZS during 48 h fermentation. The CBP ethanol production by NZS and NS:Z using potatoes resulted in 16.3 g/L and 21.5 g/L ethanol during 96 h fermentation, respectively. For the first time in this study, B. subtilis was successfully used for CBP ethanol production with S. cerevisiae alcohol dehydrogenase. The results of the study provide insights on the potentials of B. subtilis for affordable bioethanol production from inexpensive plant biomass and wastes. However, the potentials need to be improved by metabolic and process engineering for higher yields of ethanol production and plant biomass utilization.


Subject(s)
Alcohol Dehydrogenase/genetics , Bacillus subtilis/genetics , Ethanol/metabolism , Metabolic Engineering , Pyruvate Decarboxylase/genetics , Bacillus subtilis/metabolism , Biomass , Ethanol/chemistry , Fermentation/genetics , Hydrolysis , Lactic Acid/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Zymomonas/enzymology , Zymomonas/genetics
4.
Bioinformation ; 13(5): 136-139, 2017.
Article in English | MEDLINE | ID: mdl-28690378

ABSTRACT

Alkaptonuria is an inherited disease that is caused by homogenticate accumulation. Deficiency or mutation in Homogentisate 1,2 dioxygenase gene (chromosome 3q21-q23) leads to production of incorrectly folded or truncated enzyme. Several studies indicated that competitive inhibitors of Homogentisate 1,2 dioxygenase like Nitisinone could be used for Alkaptonuria treatment. Therefore, it is of interest to design better inhibitors of the enzyme. We used subset 3_p.0.5 from Zinc database as the virtual screening library by PyRx software relaying on Lamarckian genetics algorithm. Top 10 hits with more efficient binding affinity were analyzed and hit No#5 and No# 7 was selected for further design. In Lig No#5, we decreased the hydrophobicity by adding oxygen in the hydrophobic tail of the molecule at positions C5 and C10. The new compound of (2Z, 5Z, 8Z)-6,9-Dihydroxy-2-(2-hydroxy-5-oxo-1,3-cyclohexadien-1-yl)-2,5,8-decatrienoic acid satisfied Lipinski rules as well as PhysChem and FafDrugs filters. Moreover, the modified version of Lig No# 7 with the IUPAC name of [2-(Carboxymethyl)-3,5-dihydroxyphenyl] acetic acid satisfies the Lipisnki, FafDrugs and Physchem.

5.
Bioinformation ; 13(5): 140-143, 2017.
Article in English | MEDLINE | ID: mdl-28690379

ABSTRACT

Tyrosinemia type I is the result of genetic disorder in fomaryl acetoacetase gene that leads to 4-fumaryl acetoacetate accumulation. The current treatment for tyrosinemia type I is nitisinone that inhibits 4-hydroxyphenyl pyruvic dioxygenase in competitive manner. In the present study, we have designed two theoretical chemicals, which could inhibit the direct enzyme responsible for fumarylacetoacetate formation. Subset 2_p.0.5 from Zinc database was screened by PyRx software using a Lamarckian genetic algorithm as the scoring function for docking. Top nine successive hits were selected for further pharmacological analysis and finally the new designed ligands RD6-2 (3Z)- 1,3-Butadiene-1,1,2,4-tetrol and RD-7-1 ((Z)-3-[4-Hydroxy-1-(hydroxymethyl)cyclohexyl]-2-propene-1,2-diol could pass PhysChem, FAFDrugs and AdmetSAR filter. The designed ligands were non-substrate and non-inhibitor of CYP450 and nontoxic in AMES test. LD50 of RD-6-2 was 793mg/kg with the toxicity class of four and The LD50 of RD-7-1 was calculated as 5000mg/kg within the toxicity class of five. The designed molecules are introduced as the new theoretical small molecules, which can theoretically inhibit 4- maleylacetoacetate isomerase in a competitive manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...