Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(16): A1074-A1083, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510492

ABSTRACT

Discovering ways to increase the LED light extraction efficiency (LEE) should help create the largest performance improvement in the power of UV AlGaN LEDs. Employing surface roughening to increase the LEE of typical AlGaN UV LEDs is challenging and not well understood, yet it can be achieved easily in AlGaN LEDs grown on SiC. We fabricate thin-film UV LEDs (~294-310 nm) grown on SiC-with reflective contacts and roughened emission surface-to study and optimize KOH roughening of N-face AlN on the LEE as a function of roughened AlN pyramid size and KOH solution temperature. The LEE increased the most (2X) when the average AlN pyramid base diagonals (d) were comparable to the electroluminescence (EL) wavelength in the AlN layer (d ~λEL; 42-52 pyramids/µm2), but the LEE enhancement diminished when d was much larger than λEL (d ~5.5λEL; 2-3 pyramids/µm2). The UV LEDs had a 10 nm p-GaN contact layer, and the forward voltage was ~6 V at ~8 A/cm2, with a voltage efficiency (VE) of ~70%. The VE of the LEDs did not change after KOH roughening. This work suggests important implications to increase the LEE of AlGaN LEDs.

2.
Phys Rev Lett ; 121(17): 176802, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411938

ABSTRACT

The carrier effective mass plays a crucial role in modern electronic, optical, and catalytic devices and is fundamentally related to key properties of solids such as the mobility and density of states. Here we demonstrate a method to deterministically engineer the effective mass using spatial confinement in metallic quantum wells of the transition metal oxide IrO_{2}. Using a combination of in situ angle-resolved photoemission spectroscopy measurements in conjunction with precise synthesis by oxide molecular-beam epitaxy, we show that the low-energy electronic subbands in ultrathin films of rutile IrO_{2} have their effective masses enhanced by up to a factor of 6 with respect to the bulk. The origin of this strikingly large mass enhancement is the confinement-induced quantization of the highly nonparabolic, three-dimensional electronic structure of IrO_{2} in the ultrathin limit. This mechanism lies in contrast to that observed in other transition metal oxides, in which mass enhancement tends to result from complex electron-electron interactions and is difficult to control. Our results demonstrate a general route towards the deterministic enhancement and engineering of carrier effective masses in spatially confined systems, based on an understanding of the three-dimensional bulk electronic structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...