Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 225: 107050, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36736630

ABSTRACT

Based on its phylogenetic relationship to monitor lizards (Varanidae), Gila monsters (Heloderma spp.), and the earless monitor Lanthanotus borneesis, the Chinese crocodile lizard, Shinisaurus crocodilurus, has been assigned to the Toxicofera clade, which comprises venomous reptiles. However, no data about composition and biological activities of its oral secretion have been reported. In the present study, a proteomic analysis of the mandibular gland of S. crocodilurus and, for comparison, of the herbivorous Solomon Island skink Corucia zebrata, was performed. Scanning electron microscopy (SEM) of the teeth from S. crocodilurus revealed a sharp ridge on the anterior surface, but no grooves, whereas those of C. zebrata possess a flattened crown with a pointed cusp. Proteomic analysis of their gland extracts provided no evidence of venom-derived peptides or proteins, strongly supporting the non-venomous character of these lizards. Data are available via ProteomeXchange with identifier PXD039424.


Subject(s)
Alligators and Crocodiles , Lizards , Animals , Alligators and Crocodiles/metabolism , Lizards/metabolism , Phylogeny , Proteomics , Venoms/chemistry
2.
Toxicon ; 189: 73-78, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33245962

ABSTRACT

Based on its mandibular gland secretion, the earless monitor lizard, Lanthanotus borneensis, has been considered a venomous animal like other members of the Toxicofera group, including Heloderma. In the present study, the gland structure and teeth of L. borneensis were examined by micro-tomography (µCT) and scanning electron microscopy (SEM), respectively, and proteomic analysis of the gland extract was performed. The mandibular gland consists of six compartments with separate ducts. The pleurodont teeth of the lower and upper jaw are not grooved but possess a sharp ridge on the anterior surface. Proteomic analysis of the gland extract confirmed previous studies that kallikrein enzymes are the major biologically active components. In view of the lizard's biology, its mandibular gland secretion is obviously not needed for prey capture or defence. It seems not justified the labelling of L. borneensis as a venomous animal. However, definitively answering this question requires toxinological studies on natural prey.


Subject(s)
Lizards , Venoms , Animals , Kallikreins , Proteomics , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL
...