Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36016142

ABSTRACT

To investigate the immunogenic cross reactivity between goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV), cross-neutralization was carried out with serum samples collected from birds after infection with one of the two waterfowl parvoviruses. The significantly higher virus neutralization titer obtained against the homologous virus than against the heterologous one suggests important differences between the GPV and MDPV antigenic make up that affects the induced protective virus-neutralizing antibody specificity. This was further confirmed by cross-protection studies carried out in waterfowl parvovirus antibody-free Muscovy ducks immunized at one day of age with whole-virus inactivated oil-emulsion vaccines containing either GPV or MDPV as a monovalent vaccine, or both viruses as a bivalent vaccine. Protection against the clinical disease (growth retardation and feathering disorders) provided by the monovalent vaccine was complete against homologous virus challenge at 2 weeks post-vaccination, while the protection against the heterologous virus challenge was significantly lower (p < 0.001). Only the bivalent vaccine containing both goose and Muscovy duck parvoviruses in an inactivated form protected the birds (90−100%) against both waterfowl parvoviruses that can cause disease in Muscovy ducks. Both the cross-neutralization and cross-protection results indicated that adequate protection in Muscovy ducks against the two waterfowl parvoviruses could be achieved only with a vaccine containing both goose and Muscovy duck parvoviruses. Our results showed that the inactivated vaccine applied at one day of age could induce fast immunity (by 2 weeks post-vaccination), providing complete clinical protection in maternal antibody-free birds. It was also demonstrated that day-old vaccination of ducks with maternal antibodies with bivalent vaccine induced active immunity, resulting in 90 to 100% protection by 3 weeks of age, after the decline of maternal antibodies. A booster vaccination administered at 3 weeks of age following the day-old vaccination resulted in a strong and durable immunity against the clinical disease during the susceptible age of the birds.

2.
Avian Pathol ; 38(3): 233-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19468941

ABSTRACT

Outbreaks of haemorrhagic nephritis and enteritis of geese (HNEG) have been reported in goose flocks in Hungary, Germany and France since 1969. HNEG is characterized by high morbidity and mortality rates in geese 3 to 10 weeks of age. The causative agent of HNEG is the goose haemorrhagic polyomavirus (GHPV), which has a circular double-stranded DNA genome encoding the structural proteins VP1, VP2 and VP3. In vitro culture of GHPV has been problematic, so the baculovirus system was used to construct a recombinant virus expressing the VP1 gene of GHPV under control of the polyhedrin promoter in Sf9 insect cells. The expression and the identity of recombinant goose polyomavirus VP1 in the crude Sf9 cell extracts were confirmed by mass spectrometry. Experimental oil-emulsion vaccines containing two different doses of antigen were prepared using this crude extract. Goslings were vaccinated either once at 1 day old or twice by boosting 18 days after the primary vaccination, and were challenged with a virulent polyomavirus isolate at 5 weeks of age. A single injection of either vaccine dose induced 95% protection against challenge. Using the booster vaccination regimen, 100% protection was achieved with either vaccine dose.


Subject(s)
Enteritis/veterinary , Geese , Nephritis/veterinary , Polyomavirus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Viral Vaccines/immunology , Amino Acid Sequence , Animals , Capsid Proteins/genetics , Cell Line , DNA Primers/genetics , Enteritis/prevention & control , Enteritis/virology , Europe , Mass Spectrometry , Molecular Sequence Data , Nephritis/prevention & control , Nephritis/virology , Polymerase Chain Reaction , Polyomavirus/genetics , Polyomavirus/metabolism , Sequence Analysis, DNA , Spodoptera , Vaccines, Synthetic , Viral Vaccines/administration & dosage
3.
Avian Pathol ; 38(2): 175-80, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19322718

ABSTRACT

From the early 1970s to the present, numerous cases of short beak and dwarfism syndrome (SBDS) have been reported in mule ducks from France. The animals showed strong growth retardation with smaller beak and tarsus. It was suggested that the syndrome was caused by goose parvovirus on the basis of serological investigation, but the causative agent has not been isolated and the disease has not so far been reproduced by experimental infection. The aim of the present study was to characterize the virus strains isolated from field cases of SBDS, and to reproduce the disease experimentally. Phylogenetic analysis proved that the parvovirus isolates obtained from SBDS of mule duck belonged to a distinct lineage of goose parvovirus-related group of waterfowl parvoviruses. The authors carried out experimental infections of 1-day-old, 2-week-old and 3-week-old mule ducks by the oral route with three different parvovirus strains: strain D17/99 of goose parvovirus from Derzsy's disease, strain FM of Muscovy duck parvovirus from the parvovirus disease of Muscovy ducks, and strain D176/02 isolated from SBDS of mule duck. The symptoms of SBDS of the mule duck could only be reproduced with the mule duck isolate (strain D176/02) following 1-day-old inoculation. Infection with a genetically different strain of goose parvovirus isolated from classical Derzsy's disease (D17/99) or with the Muscovy duck parvovirus strain (FM) did not cause any clinical symptoms or pathological lesions in mule ducks.


Subject(s)
Beak/abnormalities , Beak/virology , Dwarfism/veterinary , Dwarfism/virology , Geese/virology , Parvoviridae Infections/veterinary , Parvovirus/genetics , Poultry Diseases/virology , Animals , Beak/anatomy & histology , Body Weight , Crosses, Genetic , DNA Primers , DNA, Viral/genetics , Embryo, Nonmammalian/virology , Geese/genetics , Parvovirus/classification , Parvovirus/isolation & purification , Phylogeny , Polymerase Chain Reaction/methods , Syndrome
4.
Acta Vet Hung ; 53(1): 73-89, 2005.
Article in English | MEDLINE | ID: mdl-15782661

ABSTRACT

Parvovirus infection of Muscovy ducks caused by a genetically and antigenically distinct virus has been reported from Germany, France, Israel, Hungary, some Asian countries and the USA. The pathological changes include those of degenerative skeletal muscle myopathy and myocarditis, hepatitis, sciatic neuritis and polioencephalomyelitis. In the study presented here, day-old and 3-week-old goslings and Muscovy ducks were infected experimentally with three different parvovirus strains (isolates of D-216/4 from the classical form of Derzsy's disease, D-190/3 from the enteric form of Derzsy's disease, and strain FM from the parvovirus disease of Muscovy ducks). All three parvovirus strains caused severe disease in both day-old and 3-week-old Muscovy ducks but in the goslings only the two strains of goose origin (D-216/4 and D-190/3) caused disease with high (90-100%) mortality when infection was performed at day old. Strain FM (of Muscovy duck origin) did not cause any clinical signs or pathological lesions in the goslings. In the day-old goslings and Muscovy ducks the principal pathological lesions were severe enteritis with necrosis of the epithelial cells (enterocytes) of the mucous membrane and the crypts of Lieberkühn, and the formation of intranuclear inclusion bodies. Other prominent lesions included hepatitis and atrophy (lymphocyte depletion) of the lymphoid organs (bursa of Fabricius, thymus, spleen). In goslings infected with the strain originating from the classical form of Derzsy's disease mild myocarditis was also detected. After infection at three weeks of age, growth retardation, feathering disorders, myocardial lesions (degeneration of cardiac muscle cells, lympho-histiocytic infiltration) and hepatitis were the most prominent lesions in both geese and Muscovy ducks. In addition to the lesions observed in the geese, muscle fibre degeneration, mild sciatic neuritis and polioencephalomyelitis were also observed in the Muscovy ducks infected with any of the three parvovirus strains.


Subject(s)
Bird Diseases/pathology , Ducks/virology , Geese/virology , Parvoviridae Infections/veterinary , Age Factors , Animals , Bird Diseases/virology , Parvoviridae Infections/pathology , Parvoviridae Infections/virology , Parvovirus/classification , Random Allocation , Viral Load/veterinary
5.
Immunology ; 107(3): 288-96, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12423304

ABSTRACT

Maternal immunity is mediated exclusively by colostral immunoglobulins in ruminants. As the neonatal Fc receptor (FcRn) is suggested to be involved in the transport of immunoglobulin G (IgG) in the mammary gland, we cloned this receptor from sheep and analysed its expression in the mammary gland around the time of parturition and also in the small intestine from the newborn lamb. FcRn heavy-chain mRNA was detected (by using in situ hybridization) exclusively in the acinar and ductal epithelial cells in mammary gland biopsies both before and after parturition. Immunohistochemistry revealed that the cytoplasm of the epithelial cells of the acini and ducts in the mammary gland biopsies stained homogeneously before parturition. A remarkable difference was observed in the pattern after lambing, where the apical side of the cells was strongly stained. The presence of the FcRn in the acinar and ductal epithelial cells of the mammary gland, and the obvious change in distribution before and after parturition, indicate that the FcRn plays an important role in the transport of IgG during colostrum formation in ruminants. Immunohistochemical analysis detected a strong apical and a weak basal FcRn signal in the duodenal crypt cells of a neonatal lamb, which have been previously demonstrated to secrete IgG1 in newborn ruminants. The FcRn was not detected in the duodenal enterocytes, which absorb intact IgG from the colostrum in a non-specific manner. These data suggest that FcRn is involved in IgG1 secretion in ruminant epithelial cells.


Subject(s)
Animals, Newborn/immunology , Duodenum/immunology , Mammary Glands, Animal/immunology , Receptors, Fc/metabolism , Sheep/immunology , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cloning, Molecular , Female , Histocompatibility Antigens Class I , Humans , Immunity, Maternally-Acquired , Immunoglobulin G/metabolism , In Situ Hybridization , Labor, Obstetric/immunology , Molecular Sequence Data , Pregnancy , Rats , Receptors, Fc/genetics , Sequence Alignment , Species Specificity
6.
Vet Immunol Immunopathol ; 87(3-4): 327-30, 2002 Sep 10.
Article in English | MEDLINE | ID: mdl-12072253

ABSTRACT

Among the multiple functions, which have been identified for the neonatal Fc receptor (FcRn), we study its role in the IgG transport in the mammary gland during the colostrum formation. For this reason, we have obtained several mammary gland biopsies from a pregnant sheep around parturition. The presence of the FcRn heavy chain mRNA was detected exclusively in the acinar and ductal epithelial cell by in situ hybridization (ISH). We detected strong signal in samples harvested 24 and 10 days prepartum; however, in samples we collected postpartum was barely detectable. Immunohistochemistry confirmed our ISH data. The cytoplasm of the epithelial cells of the acini and ducts in the mammary gland biopsies stained homogeneously before parturition, although a remarkable difference was observed in the pattern after lambing. The signal indicated uneven distribution of the FcRn alpha chain in the epithelial cells 1 and 5 days postpartum, since the apical sides of the epithelial cells were highlighted. The presence of the FcRn in the acinar and ductal epithelial cells and the obvious change of its distribution before and after parturition suggest that FcRn plays an important role in the IgG transport during colostrum formation. FcRn expression was also found in the lamb duodenal crypt epithelial cells, which have been previously demonstrated to secrete IgG1 in newborn ruminants, suggesting secretory role of the FcRn in ruminant epithelial cells.


Subject(s)
Mammary Glands, Animal/immunology , Receptors, Fc/analysis , Sheep/immunology , Animals , Immunoglobulin G/physiology , In Situ Hybridization , Rabbits , Receptors, Fc/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...