Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 378(6623): 983-989, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454826

ABSTRACT

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Subject(s)
DNA Breaks, Single-Stranded , DNA Demethylation , DNA Repair , Enhancer Elements, Genetic , Induced Pluripotent Stem Cells , Neurons , Thymine DNA Glycosylase , Cell Differentiation , Neurons/enzymology , 5-Methylcytosine/metabolism , Humans , Cell Transdifferentiation
2.
Elife ; 112022 05 16.
Article in English | MEDLINE | ID: mdl-35575473

ABSTRACT

DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.


Subject(s)
DNA Breaks, Double-Stranded , F-Box Proteins , Animals , DNA/genetics , DNA End-Joining Repair , DNA Repair , DNA-Activated Protein Kinase/genetics , F-Box Proteins/genetics , G1 Phase/genetics , Humans , Mice
3.
Genes Dev ; 35(19-20): 1356-1367, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34503990

ABSTRACT

Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.


Subject(s)
DNA Breaks, Double-Stranded , DNA Replication , DNA Repair/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , Homologous Recombination/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
Elife ; 102021 09 03.
Article in English | MEDLINE | ID: mdl-34477552

ABSTRACT

DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Rad51 Recombinase/metabolism , Trans-Activators/metabolism , BRCA1 Protein/metabolism , DNA Repair Enzymes/metabolism , DNA Replication , G1 Phase , G2 Phase , Homologous Recombination , Humans , S Phase , Trans-Activators/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
5.
Nat Commun ; 12(1): 4856, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381034

ABSTRACT

Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.


Subject(s)
CCCTC-Binding Factor/metabolism , Cellular Reprogramming , Totipotent Stem Cells/cytology , Animals , Binding Sites , CCCTC-Binding Factor/genetics , Cell Death , DNA Damage , Embryo, Mammalian , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Totipotent Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Life Sci Space Res (Amst) ; 22: 47-54, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31421848

ABSTRACT

Exposure to the types of radiation encountered outside the magnetic field of the earth can disrupt cognitive performance. Exploratory class missions to other planets will include both male and female astronauts. Because estrogen can function as a neuroprotectant, it is possible that female astronauts may be less affected by exposure to space radiation than male astronauts. To evaluate the effectiveness of estrogen to protect against the disruption of cognitive performance by exposure to space radiation intact and ovariectomized female rats with estradiol or vehicle implants were tested on novel object performance and operant responding on an ascending fixed-ratio reinforcement schedule following exposure to 12C (290 MeV/n) or 4He (300 MeV/n) particles. The results indicated that exposure to carbon or helium particles did not disrupt cognitive performance in the intact rats. Estradiol implants in the ovariectomized subjects exacerbated the disruptive effects of space radiation on operant performance. Although estrogen does not appear to function as a neuroprotectant following exposure to space radiation, the present data suggest that intact females may be less responsive to the deleterious effects of exposure to space radiation on cognitive performance, possibly due to the effects of estrogen on cognitive performance.


Subject(s)
Behavior, Animal/radiation effects , Carbon/adverse effects , Cognition/radiation effects , Helium/adverse effects , Animals , Carbon/chemistry , Cosmic Radiation , Helium/chemistry , Ovariectomy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...