Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106921

ABSTRACT

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

2.
J Am Heart Assoc ; 9(19): e017789, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33006292

ABSTRACT

Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface-only visualization of unstable 3-dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high-resolution subsurface near-infrared optical mapping, integrated with 3-dimensional structural imaging and heart-specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.


Subject(s)
Atrial Fibrillation/etiology , Heart/physiopathology , Adenosine/pharmacology , Adult , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Female , Heart/drug effects , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Imaging, Three-Dimensional , Male , Microelectrodes , Middle Aged , Myocardium/pathology , Voltage-Sensitive Dye Imaging
3.
Circ Arrhythm Electrophysiol ; 13(10): e008249, 2020 10.
Article in English | MEDLINE | ID: mdl-32921129

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) can be maintained by localized intramural reentrant drivers. However, AF driver detection by clinical surface-only multielectrode mapping (MEM) has relied on subjective interpretation of activation maps. We hypothesized that application of machine learning to electrogram frequency spectra may accurately automate driver detection by MEM and add some objectivity to the interpretation of MEM findings. METHODS: Temporally and spatially stable single AF drivers were mapped simultaneously in explanted human atria (n=11) by subsurface near-infrared optical mapping (NIOM; 0.3 mm2 resolution) and 64-electrode MEM (higher density or lower density with 3 and 9 mm2 resolution, respectively). Unipolar MEM and NIOM recordings were processed by Fourier transform analysis into 28 407 total Fourier spectra. Thirty-five features for machine learning were extracted from each Fourier spectrum. RESULTS: Targeted driver ablation and NIOM activation maps efficiently defined the center and periphery of AF driver preferential tracks and provided validated annotations for driver versus nondriver electrodes in MEM arrays. Compared with analysis of single electrogram frequency features, averaging the features from each of the 8 neighboring electrodes, significantly improved classification of AF driver electrograms. The classification metrics increased when less strict annotation, including driver periphery electrodes, were added to driver center annotation. Notably, f1-score for the binary classification of higher-density catheter data set was significantly higher than that of lower-density catheter (0.81±0.02 versus 0.66±0.04, P<0.05). The trained algorithm correctly highlighted 86% of driver regions with higher density but only 80% with lower-density MEM arrays (81% for lower-density+higher-density arrays together). CONCLUSIONS: The machine learning model pretrained on Fourier spectrum features allows efficient classification of electrograms recordings as AF driver or nondriver compared with the NIOM gold-standard. Future application of NIOM-validated machine learning approach may improve the accuracy of AF driver detection for targeted ablation treatment in patients.


Subject(s)
Action Potentials , Atrial Fibrillation/diagnosis , Electrophysiologic Techniques, Cardiac , Fourier Analysis , Heart Rate , Machine Learning , Voltage-Sensitive Dye Imaging , Atrial Fibrillation/physiopathology , Humans , Predictive Value of Tests , Reproducibility of Results , Spectroscopy, Near-Infrared , Time Factors
4.
Sci Rep ; 9(1): 721, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679527

ABSTRACT

Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.


Subject(s)
Calcium/metabolism , Epicardial Mapping/methods , Heart/physiology , Software , Voltage-Sensitive Dye Imaging/methods , Animals , Fluorescent Dyes/chemistry , Mice , Perfusion , Rats , Voltage-Sensitive Dye Imaging/instrumentation
5.
JACC Clin Electrophysiol ; 4(12): 1501-1515, 2018 12.
Article in English | MEDLINE | ID: mdl-30573112

ABSTRACT

OBJECTIVES: This study sought to improve atrial fibrillation (AF) driver identification by integrating clinical multielectrode mapping with driver fingerprints defined by high-resolution ex vivo 3-dimensional (3D) functional and structural imaging. BACKGROUND: Clinical multielectrode mapping of AF drivers suffers from variable contact, signal processing, and structural complexity within the 3D human atrial wall, raising questions on the validity of such drivers. METHODS: Sustained AF was mapped in coronary-perfused explanted human hearts (n = 11) with transmural near-infrared optical mapping (∼0.3 mm2 resolution). Simultaneously, custom FIRMap catheters (∼9 × 9 mm2 resolution) mapped endocardial and epicardial surfaces, which were analyzed by Focal Impulse and Rotor Mapping activation and Rotational Activity Profile (Abbott Labs, Chicago, Illinois). Functional maps were integrated with contrast-enhanced cardiac magnetic resonance imaging (∼0.1 mm3 resolution) analysis of 3D fibrosis architecture. RESULTS: During sustained AF, near-infrared optical mapping identified 1 to 2 intramural, spatially stable re-entrant AF drivers per heart. Driver targeted ablation affecting 2.2 ± 1.1% of the atrial surface terminated and prevented AF. Driver regions had significantly higher phase singularity density and dominant frequency than neighboring nondriver regions. Focal Impulse and Rotor Mapping had 80% sensitivity to near-infrared optical mapping-defined driver locations (16 of 20), and matched 14 of 20 driver visualizations: 10 of 14 re-entries seen with Rotational Activity Profile; and 4 of 6 breakthrough/focal patterns. Focal Impulse and Rotor Mapping detected 1.1 ± 0.9 false-positive rotational activity profiles per recording, but these regions had lower intramural contrast-enhanced cardiac magnetic resonance imaging fibrosis than did driver regions (14.9 ± 7.9% vs. 23.2 ± 10.5%; p < 0.005). CONCLUSIONS: The study revealed that both re-entrant and breakthrough/focal AF driver patterns visualized by surface-only clinical multielectrodes can represent projections of 3D intramural microanatomic re-entries. Integration of multielectrode mapping and 3D fibrosis analysis may enhance AF driver detection, thereby improving the efficacy of driver-targeted ablation.


Subject(s)
Atrial Fibrillation , Cardiac Imaging Techniques/methods , Electrophysiologic Techniques, Cardiac/methods , Heart , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/physiopathology , Heart/diagnostic imaging , Heart/physiopathology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Signal Processing, Computer-Assisted
6.
Biomol NMR Assign ; 3(1): 99-102, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19636956

ABSTRACT

We report (1)H(N), (15)N, and (13)C resonance assignments for the 15.6 kDa STAS domain of the putative sulfate transporter of Mycobacterium tuberculosis, Rv1739c, using heteronuclear, multidimensional NMR spectroscopy. Rv1739c is a SulP anion permease, related in structure to the SLC26 gene family of metazoan anion exchangers and anion channels.


Subject(s)
Anion Transport Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Mycobacterium tuberculosis/chemistry , Amino Acid Sequence , Carbon Isotopes/chemistry , Molecular Sequence Data , Nitrogen Isotopes/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits , Protons
7.
Blood Cells Mol Dis ; 42(3): 233-40, 2009.
Article in English | MEDLINE | ID: mdl-19380103

ABSTRACT

Oligomerization, function, and regulation of unmodified mouse Kcc1 K-Cl cotransporter were studied by chemical crosslinking. Treatment of Xenopus oocytes and 293T cells expressing K-Cl cotransporter Kcc1 with several types of chemical cross-linkers shifted Kcc1 polypeptide to higher molecular weight forms. More extensive studies were performed with the amine-reactive disuccinyl suberate (DSS) and with the sulfhydryl-reactive bis-maleimidohexane (BMH). Kcc1 cross-linking was time-dependent in intact oocytes, and was independent of protein concentration in detergent lysates from oocytes or 293T cells. Kcc1 cross-linking by the cleavable cross-linker DTME was reversible. The N-terminal and C-terminal cytoplasmic tails of Kcc1 were not essential for Kcc1 crosslinking. PFO-PAGE and gel filtration revealed oligomeric states of uncrosslinked KCC1 corresponding in mobility to that of cross-linked protein. DSS and BMH each inhibited KCC1-mediated (86)Rb(+) uptake stimulated by hypotonicity or by N-ethylmaleimide (NEM) without reduction in nominal surface abundance of KCC1. These data add to evidence supporting the oligomeric state of KCC polypeptides.


Subject(s)
Cross-Linking Reagents/pharmacology , Symporters/chemistry , Animals , Cell Line , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Female , Humans , Ion Transport/drug effects , Kidney/cytology , Kidney/embryology , Mice , Microscopy, Fluorescence , Molecular Weight , Oocytes , Protein Structure, Tertiary , RNA, Complementary/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/drug effects , Rubidium Radioisotopes/metabolism , Symporters/drug effects , Xenopus laevis , K Cl- Cotransporters
8.
Article in English | MEDLINE | ID: mdl-18255326

ABSTRACT

Growth and virulence of mycobacteria requires sulfur uptake. The Mycobacterium tuberculosis genome contains, in addition to the ABC sulfate permease cysTWA, three SLC26-related SulP genes of unknown function. We report that induction of Rv1739c expression in E. coli increased bacterial uptake of sulfate, but not Cl(-), formate, or oxalate. Uptake was time-dependent, maximal at pH 6.0, and exhibited a K(1/2) for sulfate of 4.0 muM. Na(+)-independent sulfate uptake was not reduced by bicarbonate, nitrate, or phosphate, but was inhibited by sulfite, selenate, thiosulfate, N-ethylmaleimide and carbonyl cyanide 3-chloro-phenylhydrazone. Sulfate uptake was also increased by overexpression of the Rv1739c transmembrane domain, but not of the cytoplasmic C-terminal STAS domain. Mutation to serine of the three cysteine residues of Rv1739c did not affect magnitude, pH-dependence, or pharmacology of sulfate uptake. Expression of Rv1739c in a M. bovis BCG strain lacking the ABC sulfate permease subunit CysA could not complement sulfate auxotrophy. Moreover, inducible expression of Rv1739c in an E. coli strain lacking CysA did not increase sulfate uptake by intact cells. Our data show that facilitation of bacterial sulfate uptake by Rv1739c requires CysA and its associated sulfate permease activity, and suggest that Rv1739c may be a CysTWA-dependent sulfate transporter.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mycobacterium tuberculosis/genetics , Sulfates/pharmacokinetics , Animals , Bacterial Proteins/chemistry , Cloning, Molecular , Cysteine/genetics , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Models, Biological , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Substrate Specificity , Transformation, Bacterial , Xenopus
9.
Novartis Found Symp ; 273: 107-19; discussion 119-25, 261-4, 2006.
Article in English | MEDLINE | ID: mdl-17120764

ABSTRACT

The SLC26 anion transporter polypeptides exhibit considerably greater sequence diversity among near-species orthologues than is found among the SLC4 bicarbonate transporters, and among SLC26 transporters is most marked among SLC26A6 orthologues. This observation prompted systematic functional comparison in Xenopus oocytes of mouse Slc26a6 with several human SLC26A6 polypeptide variants. Mouse and human polypeptides exhibited similar rates of bidirectional [14C]oxalate flux, Cl-/HCO3- exchange, and Cl-/OH- exchange, and similar cAMP-stimulation and enhancement of that stimulation by wild-type but not delta F508 CFTR. However, high rates of 36Cl- and 35S-sulfate transport by mouse Slc26a6 contrasted with low transport rates of the human proteins. The high 36Cl- transport phenotype cosegregated with the transmembrane domain of mouse Slc26a6 in chimera studies. Mouse Slc26a6 and human SLC26A6 each mediated electroneutral Cl-/HCO3- and Cl-/OH- exchange. But, whereas Cl-/oxalate exchange by mouse Slc26a6 was electrogenic, that mediated by human SLC26A6 appeared electroneutral. Oocyte expression of either mouse or human orthologue elicited currents that were pharmacologically distinct from the monovalent anion exchange activities measured in the same lots of oocytes. The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive in isotopic flux assays. Understanding of SLC26 transport mechanisms and pathophysiology will benefit from recognition of substantial differences in transport properties among orthologues.


Subject(s)
Antiporters/metabolism , Membrane Transport Proteins/metabolism , Peptides/metabolism , Animals , Chloride-Bicarbonate Antiporters/metabolism , Chlorides/metabolism , Humans , Mice , Oxalates/metabolism , Protein Structure, Tertiary , Sulfate Transporters , Sulfates/metabolism
10.
Coron Artery Dis ; 17(4): 345-9, 2006 May.
Article in English | MEDLINE | ID: mdl-16707957

ABSTRACT

BACKGROUND: Most circulating blood cells expressing the marker CD34 are bone marrow progenitor cells. These cells differentiate into cardiomyocytes, endothelial and smooth muscle cells after myocardial infarction in vivo. Mobilization of bone marrow progenitor cells into the peripheral blood after myocardial infarction may supply these cells to the heart. Rise in CD34+ cell concentrations following myocardial infarction would support the existence of myocardial-initiated mobilization. METHODS: Serial measurements of circulating CD34+ cells were made in 42 consecutive patients presenting with first ST-elevation myocardial infarction. Measurement of serum concentrations of monocyte chemoattractant protein-1, stromal derived factor-1, hepatocyte growth factor, interleukin-17 and thrombopoietin was also performed. Samples were drawn on day 1 after myocardial infarction, and on days 4, 8 and 12. Levels of CD34+ cells and cytokines were also measured in 15 controls. RESULTS: By day 8, the mean concentration of CD34+ cells rose by 74% above mean control level of 2527 cells/ml, and 41% above day 1 mean (P=0.02). This rise was sustained on day 12 (P=0.05). On day 1, there was a 9.3-fold rise in hepatocyte growth factor above the control level of 589 pg/ml (P=0.002). Hepatocyte growth factor levels declined from the day 1 mean of 6061 to 1485 pg/ml on day 12 (P=0.002). No significant change in stromal derived factor-1, interleukin-17, monocyte chemoattractant protein-1 and thrombopoietin was observed. Elevations in CD34+ cells and hepatocyte growth factor were not related to infarction size as estimated on echocardiography. CONCLUSIONS: Elevation in the concentration of circulating CD34+ cells after myocardial infarction suggests that myocardial initiated bone marrow progenitor cell mobilization exists in humans. The cytokines studied in our protocol are not likely to play a direct role in bone marrow progenitor cell mobilization.


Subject(s)
Bone Marrow Cells/physiology , Myocardial Infarction/blood , Myocardial Infarction/pathology , Stem Cells/cytology , Antigens, CD34/metabolism , Case-Control Studies , Chemokine CCL2/blood , Chemokine CXCL12 , Chemokines, CXC/blood , Cytokines/blood , Electrocardiography , Female , Flow Cytometry/methods , Hepatocyte Growth Factor/blood , Humans , Interleukin-17/blood , Male , Middle Aged , Thrombopoietin/blood
11.
Am J Physiol Renal Physiol ; 286(6): F1163-70, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14749257

ABSTRACT

Three splice variants of anion exchanger (AE)2 (AE2a, b, and c) have been described in the rat, but their relative distribution in rat kidney is not known. The purpose of this study was to describe the segmental and cellular distribution of the AE2 isoforms in the rat kidney and to evaluate whether the expression levels of these AE2 isoforms are regulated independently in response to chronic NH(4)Cl loading. Two polyclonal antibodies were generated, respectively, recognizing a NH(2)-terminal peptide unique to AE2a and an amino acid sequence common to AE2a and AE2b. Antibody specificities were tested using cells transfected separately with the AE2a, AE2b, and AE2c isoforms. Immunohistochemistry on sections of paraffin-embedded rat kidneys showed a distribution of AE2a/AE2b labeling in the kidney similar to the distribution of AE2 in the rat kidney reported previously. AE2 is highly expressed in the medullary thick ascending limb, cortical thick ascending limb (cTAL), and macula densa. The pattern of AE2a-specific labeling differed from the pattern of AE2a/AE2b labeling in that relatively more of the total immunolabel was observed in the terminal inner medullary collecting duct. NH(4)Cl loading (0.033 mmol NH(4)Cl/g body wt for 7 days) did not change the labeling of AE2 isoforms in the medulla, whereas the labeling in the cortex was intensified and included more distal parts of the cTAL. Immunoblotting confirmed upregulation of AE2a/b expression in the cortex. These results indicate that AE2a and AE2b are differentially expressed and regulated in the rat kidney. The regulation following NH(4)Cl loading of AE2b in the cTAL suggests a role for AE2 in transepithelial bicarbonate reabsorption in this segment.


Subject(s)
Ammonium Chloride/pharmacology , Anion Transport Proteins , Antiporters , Kidney/metabolism , Membrane Proteins/biosynthesis , Animals , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique , Immunoblotting , Immunohistochemistry , In Vitro Techniques , Isomerism , Kidney/drug effects , Membrane Proteins/genetics , Membranes/drug effects , Membranes/metabolism , Mice , Microscopy, Immunoelectron , Rats , SLC4A Proteins , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...