Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 12(6): 1482-1499, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35254416

ABSTRACT

Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. SIGNIFICANCE: We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
B7-H1 Antigen , Neoplasms , Animals , Humans , Immune Checkpoint Inhibitors , Lymphocyte Activation , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor
2.
Clin Cancer Res ; 25(1): 300-311, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30206163

ABSTRACT

PURPOSE: Bromodomain and extraterminal domain (BET) proteins regulate the expression of many cancer-associated genes and pathways; BET inhibitors have demonstrated activity in diverse models of hematologic and solid tumors. We report the preclinical characterization of INCB054329, a structurally distinct BET inhibitor that has been investigated in phase I clinical trials. EXPERIMENTAL DESIGN: We used multiple myeloma models to investigate vulnerabilities created by INCB054329 treatment that could inform rational combinations. RESULTS: In addition to c-MYC, INCB054329 decreased expression of oncogenes FGFR3 and NSD2/MMSET/WHSC1, which are deregulated in t(4;14)-rearranged cell lines. The profound suppression of FGFR3 sensitized the t(4;14)-positive cell line OPM-2 to combined treatment with a fibroblast growth factor receptor inhibitor in vivo. In addition, we show that BET inhibition across multiple myeloma cell lines resulted in suppressed interleukin (IL)-6 Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling. INCB054329 displaced binding of BRD4 to the promoter of IL6 receptor (IL6R) leading to reduced levels of IL6R and diminished signaling through STAT3. Combination with JAK inhibitors (ruxolitinib or itacitinib) further reduced JAK-STAT signaling and synergized to inhibit myeloma cell growth in vitro and in vivo. This combination potentiated tumor growth inhibition in vivo, even in the MM1.S model of myeloma that is not intrinsically sensitive to JAK inhibition alone. CONCLUSIONS: Preclinical data reveal insights into vulnerabilities created in myeloma cells by BET protein inhibition and potential strategies that can be leveraged in clinical studies to enhance the activity of INCB054329.


Subject(s)
Cell Cycle Proteins/genetics , Multiple Myeloma/drug therapy , Organic Chemicals/pharmacology , Receptors, Interleukin-6/genetics , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Histone-Lysine N-Methyltransferase/genetics , Humans , Janus Kinases/genetics , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Protein Binding/drug effects , Proteins/antagonists & inhibitors , Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Repressor Proteins/genetics , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors
3.
Curr Protoc Pharmacol ; 80(1): 3.16.1-3.16.14, 2018 03.
Article in English | MEDLINE | ID: mdl-30040205

ABSTRACT

Bromodomains are protein domains that recognize acetylated lysine residues and are important for recruiting a large number of protein and multiprotein complexes to sites of lysine acetylation. They play an important role in chromatin biology and are popular targets for drug discovery. Compound screening in this area requires the use of biochemical assays to assess the binding potency of potential drug candidates. Foremost among the efforts to target bromodomains are those aimed at identifying compounds that interact with the bromodomain and extra-terminal domain (BET) family of bromodomain-containing proteins (BRD2, BRD3, BRD4, and BRDT). Inhibitors of these proteins are under clinical development for a large variety of oncologic indications. Described in this unit are several assays to assess the binding potency and selectivity within the BET protein family. Included are AlphaScreen, fluorescence polarization, and thermal shift assays. The strengths and weaknesses of each assay are discussed. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Assay , Nuclear Proteins/metabolism , Binding, Competitive , Drug Discovery , Protein Binding , Protein Domains
4.
Methods Mol Biol ; 425: 27-39, 2008.
Article in English | MEDLINE | ID: mdl-18369884

ABSTRACT

Serum analysis represents an extreme challenge because of the dynamic range of the proteins of interest, and the high structural complexity of the constituent proteins. High-abundant proteins such as albumin, IgG, transferrin, haptoglobin, IgA and alpha1-anti-trypsin represent up to 85% of the total protein mass in serum (Fig. 1). These major protein constituents interfere with identification and characterization of important moderate- and low-abundant proteins by limiting the dynamic range of mass spectral and electrophoretic analysis. During protein isolation, separation, and analysis, these six proteins often mask the detection of the more important low-abundant proteins that are of high interest as biomarkers of disease or drug targets. In one- and two-dimensional gel electrophoresis (1DGE and 2DGE) for example, the spots or bands because of these six highly abundant proteins, as well as their fragments, often overlap or completely mask large regions of the gel, making detection of the myriad low-abundant proteins very difficult, if not impossible. Moreover, proteomic analysis methods commonly include an electrophoretic or chromatographic separation step which, of course, has a finite mass loading tolerance. The presence of a large quantity of high-abundant proteins limits the mass load of targeted proteins that can be initially sampled by these separation methods and thus requires the need for multidimensional separation techniques to reduce sample complexity. Fig. 1 Composition of proteins in human serum. The protein composition is schematically depicted based on mass abundance in normal human serum. The six high-abundant proteins removed by the immunoaffinity column comprise approx 85% of the total protein mass in human serum. Herein we describe immunoaffinity depletion combined with reversed-phase separation modes to reduce the sample complexity of human serum. We selectively immunodepleted six of the most abundant proteins from human serum, then employed gradient elution reversed-phase (RP) HPLC to fractionate the remaining serum proteins. The workflow shown in (Fig. 2) was optimized to process immunodepleted flow-through serum samples directly to a RP column with minimal sample handling. The RP operational conditions permitted robust and repeatable separations and have been optimized specifically for immunodepleted serum samples.


Subject(s)
Blood Proteins/isolation & purification , Chromatography, Affinity/methods , Chromatography, High Pressure Liquid/methods , Electrophoresis, Polyacrylamide Gel , Humans
5.
J Chromatogr A ; 1189(1-2): 332-8, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18154976

ABSTRACT

The tremendous complexity of the serum and plasma proteome presents extreme analytical challenges in comprehensive analysis due to the wide dynamic range of protein concentrations. Therefore, robust sample preparation methods remain one of the important steps in the proteome characterization workflow. We present the results on a new column for the specific depletion of 14 high-abundant proteins from human serum and plasma and the subsequent reversed-phase fractionation of the flow-through proteins. Analysis of tryptic peptides was accomplished with microfluidic HPLC-Chip/MS system. Results indicate that high-abundant protein depletion combined with RP fractionation of plasma showed an improved dynamic range for proteomic analysis and enabled the identification of low-abundant plasma proteins.


Subject(s)
Blood Proteins/analysis , Proteome/analysis , Proteomics/methods , Blood Proteins/chemistry , Blood Proteins/isolation & purification , Chemical Fractionation , Chromatography, High Pressure Liquid/methods , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Proteome/chemistry , Proteome/isolation & purification , Tandem Mass Spectrometry
6.
J Proteome Res ; 5(6): 1301-12, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16739982

ABSTRACT

Proteomic analysis of complex samples can be facilitated by protein fractionation prior to enzymatic or chemical fragmentation combined with MS-based identification of peptides. Although aqueous soluble protein fractionation by liquid chromatography is relatively straightforward, membrane protein separations have a variety of technical challenges. Reversed-phase high performance liquid chromatography (RP-HPLC) separations of membrane proteins often exhibit poor recovery and bandwidths, and generally require extensive pretreatment to remove lipids and other membrane components. Human brain tissue lipid raft protein preparations have been used as a model system to develop RP-HPLC conditions that are effective for protein fractionation, and are compatible with downstream proteomic analytical workflows. By the use of an appropriate RP column material and operational conditions, human brain membrane raft proteins were successfully resolved by RP-HPLC and some of the protein components, including specific integral membrane proteins, identified by downstream SDS-PAGE combined with in-gel digestion, or in-solution digestion and LC-MS/MS analysis of tryptic fragments. Using the described method, total protein recovery was high, and the repeatability of the separation maintained after repeated injections of membrane raft preparations.


Subject(s)
Membrane Microdomains/chemistry , Membrane Proteins/analysis , Proteome/analysis , Amino Acid Sequence , Brain Chemistry , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Membrane Proteins/isolation & purification , Molecular Sequence Data , Phosphatidylcholines/analysis , Sphingomyelins/analysis
7.
J Proteome Res ; 4(5): 1522-37, 2005.
Article in English | MEDLINE | ID: mdl-16212403

ABSTRACT

Serum analysis represents an extreme challenge due to the dynamic range of the proteins of interest, and the high structural complexity of the constituent proteins. In serum, the quantities of proteins and peptides of interest range from those considered "high abundance", present at 2-70% by mass of total protein, to those considered "low abundance", present at 10(-12) M or less. This range of analytical target molecules is outside the realm of available technologies for proteomic analysis. Therefore, in this study, we have developed a workflow toward addressing the complexity of these samples through the application of multidimensional separation techniques. The use of reversed-phase methods for the separation and fractionation of protein samples has been investigated, with the goal of developing an optimized serum separation for application to proteomic analysis. Samples of human serum were depleted of the six most abundant proteins, using an immunoaffinity LC method, then were separated under a variety of reversed-phase (RP) conditions using a macroporous silica C18 surface modified column material. To compare the qualities of the RP separations of this complex protein sample, absorbance chromatograms were compared, and fractions were collected for off-line SDS-PAGE and 2D-LC-MS/MS analysis. The column fractions were further investigated by determination of protein identities using either whole selected fractions, or gel bands excised from SDS-PAGE gels of the fractions. In either case samples underwent tryptic fragmentation and peptide analysis using MALDI-MS or LC-MS/MS. The preferred conditions for RP protein separation exhibited reproducibly high resolution and high protein recoveries (>98%, as determined by protein assay). Using the preferred conditions also permitted high column mass load, with up to 500 microg of protein well tolerated using a 4.6 mm ID x 50 mm column, or up to 1.5 mg on a 9.4 mm ID x 50 mm column. Elevated column temperature (80 degrees C) was observed to be a critical operational parameter, with poorer results observed at lower temperatures. The combination of sample simplification by immunoaffinity depletion combined with a robust and high recovery RP-HPLC fractionation yields samples permitting higher quality protein identifications by coupled LC-MS methods.


Subject(s)
Blood Proteins/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Proteomics/methods , Amino Acid Sequence , Chromatography , Chromatography, Affinity , Electrophoresis , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Sequence Data , Peptides/chemistry , Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature , Time Factors
8.
Proteomics ; 5(13): 3304-13, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16052628

ABSTRACT

The need to identify protein or peptide biomarkers via readily available biological samples like serum, plasma, or cerebrospinal fluid is often hindered by a few particular proteins present at relatively high concentrations. The ability to remove these proteins specifically, reproducibly, and with high selectivity is increasingly important in proteomic studies, and success in this procedure is leading to an ever-increasing list of lower abundant proteins being identified in these biological fluids. The current work addresses some of the potential problems in depleting proteins in typical biomarker studies, including nonspecific binding during depletion procedures and whether low molecular weight (LMW) species bind to the column in a so-called "sponge" effect caused by the ability of albumin or other high-abundant proteins to bind peptides or protein fragments. LC-MS/MS methods were applied to the comparative analysis of an IgG-based immunodepletion method and a Cibacron blue (CB)-dye-based method, for specificity of removing targeted proteins (binding fraction), as well as for assessing efficiency of target removal. This analysis was extended to examine the effects of repeated use of materials (cycles of binding and elution), in order to assess potential for carryover of one sample to the next. Capacity studies and efficiency of protein removal from the serum samples were followed for the IgG-based system using both immunochemical assays (ELISA) as well as LC-MS/MS methods. Additionally, the IgG-based system was further characterized for the removal of LMW polypeptides by nonspecific binding. We conclude that the IgG-based system provided effective removal of targeted proteins, with minimal carryover, high longevity, and minimal nonspecific binding. Significant differences are noted between the depletion techniques employed, and this should be considered based on the expectations set during experimental design.


Subject(s)
Proteome , Proteomics/methods , Albumins/chemistry , Animals , Biological Assay , Biomarkers , Blood Proteins/chemistry , Calibration , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Humans , Immunochemistry , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptides/chemistry , Trifluoroethanol/chemistry , Trypsin/chemistry
9.
Electrophoresis ; 25(14): 2402-12, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15274023

ABSTRACT

We have analyzed the proteome of human cerebrospinal fluid with the help of shotgun mass spectrometry. In order to identify low-abundant proteins in these fluids, we have found it necessary to remove the abundant protein components from the mixture. Immunodepletion of the abundant proteins has allowed us to identify more than 100 proteins in cerebrospinal fluids from a patient suffering from normal pressure hydrocephalus. The identified proteins belong to a variety of different classes ranging from serum proteins to intracellular mediators that are involved in signal transduction and transcription. This work establishes a platform for future studies aimed at the comparative proteome analysis of cerebrospinal fluids from different groups of patients suffering from various psychiatric and neurological disorders.


Subject(s)
Blood Proteins/metabolism , Cerebrospinal Fluid/metabolism , Hydrocephalus, Normal Pressure/metabolism , Proteome , Electrophoresis, Gel, Two-Dimensional , Humans , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Mass Spectrometry
10.
Protein Expr Purif ; 25(3): 494-502, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12182831

ABSTRACT

Glycoprotein IIb-IIIa is an abundant platelet receptor of the integrin family that plays a primary role in platelet aggregation. It exists on the platelet surface predominantly in a resting or inactive conformation that is converted to an active binding competent conformation upon platelet activation. There is much interest in studying the difference between active and inactive GP IIb-IIIa, developing therapeutic agents targeted towards GP IIb-IIIa and developing diagnostic assays for antibodies that recognize epitopes on GP IIb-IIIa. We present here the development of a large-scale process for purifying active GP IIb-IIIa from human platelets. The procedure results in 25mg batch sizes of high purity and activity. Additionally, the effects of detergent concentration and impurities such as IgG on ELISA assays are examined.


Subject(s)
Blood Platelets/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/isolation & purification , Blotting, Western , Cell Extracts , Chromatography, Affinity , Concanavalin A/metabolism , Detergents , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/isolation & purification , Oligopeptides/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Time Factors
11.
Blood ; 99(10): 3540-6, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11986205

ABSTRACT

Glycoprotein (GP) IIb/IIIa antagonists are effective therapeutic agents, but elicit thrombocytopenia with a frequency that approaches 2%. Here, we provide evidence that thrombocytopenia in humans treated with the GP IIb/IIIa antagonist roxifiban is immune mediated. Two patients underwent conversion to a highly positive drug-dependent antibody (DDAB) status temporally associated with thrombocytopenia. Despite the continued presence of DDABs, the fall in platelet count was reversed by discontinuation of drug treatment, pointing to the exquisite drug dependency of the immune response. DDABs appear to bind to neoepitopes in GP IIb/IIIa elicited on antagonist binding. This information was used to develop an enzyme-linked immunosorbent assay (ELISA) for DDAB using solid-phase GP IIb/IIIa. A high level of specificity is indicated by the observation that DDAB binding is dependent on the chemical structure of the GP IIb/IIIa antagonist and that only 2% to 5% of human blood donors and 5% of chimpanzees present with pre-existing DDABs. Furthermore, none of 108 nonthrombocytopenic patients from the phase II roxifiban study showed an increase in antibody titer. Absorption of thrombocytopenia plasma with platelets reduced the DDAB ELISA signal, indicating that the test detects physiologically relevant antibodies. Screening patients for pre-existing or increasing DDAB titer during treatment with GP IIb/IIIa antagonists may reduce the incidence of drug-induced thrombocytopenia.


Subject(s)
Amidines/adverse effects , Enzyme-Linked Immunosorbent Assay/methods , Isoxazoles/adverse effects , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Thrombocytopenia/chemically induced , Administration, Oral , Amidines/administration & dosage , Amidines/pharmacokinetics , Animals , Antibodies/analysis , Antibodies/blood , Antibodies/immunology , Biological Availability , Clinical Trials, Phase II as Topic , Epitopes/chemistry , Epitopes/immunology , Humans , Isoxazoles/administration & dosage , Isoxazoles/pharmacokinetics , Kinetics , Pan troglodytes , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Protein Conformation , Sensitivity and Specificity , Thrombocytopenia/immunology
12.
J Biol Chem ; 277(15): 12970-7, 2002 Apr 12.
Article in English | MEDLINE | ID: mdl-11773073

ABSTRACT

The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear. To evaluate the role of BAH in vivo, the catalytic domain of BAH was specifically targeted such that the coding regions of junctin and humbug remained undisturbed. BAH null mice lack measurable BAH protein in several tissues, lack aspartyl beta-hydroxylase activity in liver preparations, and exhibit no hydroxylation of the epidermal growth factor (EGF) domain of clotting Factor X. In addition to reduced fertility in females, BAH null mice display several developmental defects including syndactyly, facial dysmorphology, and a mild defect in hard palate formation. The developmental defects present in BAH null mice are similar to defects observed in knock-outs and hypomorphs of the Notch ligand Serrate-2. In this work, beta-hydroxylation of Asp residues in EGF domains is demonstrated for a soluble form of a Notch ligand, human Jagged-1. These results along with recent reports that another post-translational modification of EGF domains in Notch gene family members (glycosylation by Fringe) alters Notch pathway signaling, lends credence to the suggestion that aspartyl beta-hydroxylation may represent another post-translational modification of EGF domains that can modulate Notch pathway signaling. Previous work has demonstrated increased levels of BAH in certain tumor tissues and a role for BAH in tumorigenesis has been proposed. The role of hydroxylase in tumor formation was tested directly by crossing BAH KO mice with an intestinal tumor model, APCmin mice. Surprisingly, BAH null/APCmin mice show a statistically significant increase in both intestinal polyp size and number when compared with BAH wild-type/APCmin controls. These results suggest that, in contrast to expectations, loss of BAH catalytic activity may promote tumor formation.


Subject(s)
Epidermal Growth Factor/metabolism , Intestinal Neoplasms/genetics , Mixed Function Oxygenases/genetics , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Catalytic Domain , Exons , Female , Hydroxylation , Incidence , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , Receptors, Notch
SELECTION OF CITATIONS
SEARCH DETAIL
...