Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 27(43): 435703, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27658641

ABSTRACT

Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

2.
Sci Rep ; 3: 3484, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24336590

ABSTRACT

Photodynamic therapy (PDT) is a technique developed to treat the ever-increasing global incidence of cancer. This technique utilises singlet oxygen ((1)O2) generation via a laser excited photosensitiser (PS) to kill cancer cells. However, prolonged sensitivity to intensive light (6-8 weeks for lung cancer), relatively low tissue penetration by activating light (630 nm up to 4 mm), and the cost of PS administration can limit progressive PDT applications. The development of quantum-dot laser diodes emitting in the highest absorption region (1268 nm) of triplet oxygen ((3)O2) presents the possibility of inducing apoptosis in tumour cells through direct (3)O2 → (1)O2 transition. Here we demonstrate that a single laser pulse triggers dose-dependent (1)O2 generation in both normal keratinocytes and tumour cells and show that tumour cells yield the highest (1)O2 far beyond the initial laser pulse exposure. Our modelling and experimental results support the development of direct infrared (IR) laser-induced tumour treatment as a promising approach in tumour PDT.


Subject(s)
Infrared Rays/adverse effects , Lasers/adverse effects , Neoplasms/metabolism , Singlet Oxygen/metabolism , Calcium/metabolism , Cell Death/radiation effects , Cell Line, Tumor , Humans , Light , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...