Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemistryOpen ; 8(3): 358-381, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30976477

ABSTRACT

Heterogeneous Pd-containing nanocatalysts, based on poly (propylene imine) dendrimers immobilized in silica pores and networks, obtained by co-hydrolysis in situ, have been synthesized and examined in the hydrogenation of various unsaturated compounds. The catalyst activity and selectivity were found to strongly depend on the carrier structure as well as on the substrate electron and geometric features. Thus, mesoporous catalyst, synthesized in presence of both polymeric template and tetraethoxysilane, revealed the maximum activity in the hydrogenation of various styrenes, including bulky and rigid stilbene and its isomers, reaching TOF values of about 230000 h-1. Other mesoporous catalyst, synthesized in the presence of polymeric template, but without addition of Si(OEt)4, provided the trans-cyclooctene formation with the selectivity of 90-95 %, appearing as similar to homogeneous dendrimer-based catalysts. Microporous catalyst, obtained only on the presence of Si(OEt)4, while dendrimer molecules acting as both anchored ligands and template, demonstrated the maximum activity in the hydrogenation of terminal linear alkynes and conjugated dienes, reaching TOF values up to 400000 h-1. Herein the total selectivity on alkene in the case of terminal alkynes and conjugated dienes reached 95-99 % even at hydrogen pressure of 30 atm. The catalysts synthesized can be easily isolated from reaction products and recycled without significant loss of activity.

2.
Chem Rec ; 18(7-8): 858-867, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29314509

ABSTRACT

Nanoparticles, being objects with high surface area are prone to agglomeration. Immobilization onto solid supports is a promising method to increase their stability and it allows for scalable industrial applications, such as metal nanoparticles adsorbed to mesoporous ceramic carriers. Tubular nanoclay - halloysite - can be an efficient solid support, enabling the fast and practical architectural (inside / outside) synthesis of stable metal nanoparticles. The obtained halloysite-nanoparticle composites can be employed as advanced catalysts, ion-conducting membrane modifiers, inorganic pigments, and optical markers for biomedical studies. Here, we discuss the possibilities to synthesize halloysite decorated with metal, metal chalcogenide, and carbon nanoparticles, and to use these materials in various fields, especially in catalysis and petroleum refinery.

SELECTION OF CITATIONS
SEARCH DETAIL
...