Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EClinicalMedicine ; 62: 102116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554124

ABSTRACT

Background: Generic and disease-specific patient-reported outcome measures (PROMs) may lack relevance and sensitivity on a patient-level in chronic diseases with differential disease expression and high individual variability, such as Cystic Fibrosis (CF). This study aimed to develop and validate a novel personalized electronic PROM (ePROM) that captures relevant aspects of quality of life in individuals with CF. Methods: The Q-Life app was developed as a short personalized ePROM to assess individual quality of life. Psychometric properties were assessed in a single-center cross-sectional study between September 2019 and September 2021 and in a prospective cohort study between September 2021 and September 2022. Findings: Combined studies included 223 participants (median age: 24 years, IQR: 19.0-32.5 years, range: 12.0-58.0 years). Internal consistency (Cronbach's alpha: 0.83-0.90) and test-retest reliability (intraclass correlation coefficient: 0.90; 95% CI: 0.65-0.92; p < 0.001) of quality of life (Q-Life) scores were strong. Q-Life scores were associated with overall Cystic Fibrosis Questionnaire-Revised (CFQ-R) scores (ρ = 0.71; p < 0.001), CFQ-R respiratory domain scores (ρ = 0.57; p < 0.001) and forced expiratory volume in 1s (ρ = 0.41; p < 0.001). Furthermore, Q-Life scores improved from 65.0 (IQR: 45.0-63.3) at baseline to 84.2 (IQR: 75.0-95.0) and 87.5 (IQR: 75.0-100.0) after 3 and 6 months of elexacaftor/tezacaftor/ivacaftor treatment (change: 20.8; 95% CI: 17.5-25.0; p < 0.001), comparable to CFQ-R respiratory domain scores (change: 22.2, 95% CI: 19.4-25.0, p < 0.001). Interpretation: The Q-Life app is a reliable, valid and sensitive personalized ePROM to measure all aspects of quality of life that really matter to individuals with Cystic Fibrosis. This patient-centered approach could provide important advantages over generic and disease-specific PROMs in the era of personalized medicine and value-based healthcare. Funding: Dutch Cystic Fibrosis Foundation, Health-Holland.

2.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36382237

ABSTRACT

Background: Although short-term efficacy of lumacaftor/ivacaftor and tezacaftor/ivacaftor is clearly established in clinical trials, data on long-term effectiveness is limited. This registry-based cohort study assessed real-world longitudinal outcomes of F508del-homozygous people with cystic fibrosis (pwCF) ≥12 years, up to 3 years after the introduction of dual cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Methods: Annual data (2010-2019) were retrieved from the Dutch Cystic Fibrosis Registry. Longitudinal trends of per cent predicted forced expiratory volume in 1 s (FEV1 % pred) decline, body mass index (BMI), BMI Z-score and intravenous antibiotic treatment duration before and after CFTR modulator initiation were assessed with linear and negative binomial mixed models. Results: We included 401 participants (41.9% female, baseline age 24.5 years (IQR 18.0-31.5 years), baseline mean±sd FEV1 70.5±23.4% pred). FEV1 decline improved from -1.36% pred per year to -0.48% pred per year after modulator initiation (change: 0.88% pred, 95% CI: 0.35-1.39%, p=0.001). This change was even 1.40% pred per year (95% CI: -0.0001-2.82%, p=0.050) higher in participants with baseline FEV1 <40% pred. In adults, annual BMI trend was not altered (change: 0.10 kg·m-2·year-1, 95% CI:-0.01-0.21, p=0.079). Annual BMI Z-score in children reversed from -0.08 per year before modulator treatment to 0.06 per year afterwards (change: 0.14 per year, 95% CI: 0.06-0.22, p<0.001). Intravenous antibiotic treatment duration showed a three-fold reduction in the first year after modulator initiation (incidence rate ratios (IRR): 0.28, 95% CI: 0.19-0.40, p<0.001), but the annual trend did not change in the subsequent years (IRR: 1.19, 95% CI: 0.94-1.50, p=0.153). Conclusion: Long-term effectiveness of dual CFTR modulator therapies on FEV1 decline, BMI and intravenous antibiotic treatment duration is less pronounced in a real-world setting than in clinical trials and varies considerably between pwCF and different baseline FEV1 levels.

3.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35086832

ABSTRACT

RATIONALE: Cystic fibrosis (CF) is a monogenic life-shortening disease associated with highly variable individual disease progression which is difficult to predict. Here we assessed the association of forskolin-induced swelling (FIS) of patient-derived organoids with long-term CF disease progression in multiple organs and compared FIS with the golden standard biomarker sweat chloride concentration (SCC). METHODS: We retrieved 9-year longitudinal clinical data from the Dutch CF Registry of 173 people with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Individual CFTR function was defined by FIS, measured as the relative size increase of intestinal organoids after stimulation with 0.8 µM forskolin, quantified as area under the curve (AUC). We used linear mixed-effect models and multivariable logistic regression to estimate the association of FIS with long-term forced expiratory volume in 1 s % predicted (FEV1pp) decline and development of pancreatic insufficiency, CF-related liver disease and diabetes. Within these models, FIS was compared with SCC. RESULTS: FIS was strongly associated with longitudinal changes of lung function, with an estimated difference in annual FEV1pp decline of 0.32% (95% CI 0.11-0.54%; p=0.004) per 1000-point change in AUC. Moreover, increasing FIS levels were associated with lower odds of developing pancreatic insufficiency (adjusted OR 0.18, 95% CI 0.07-0.46; p<0.001), CF-related liver disease (adjusted OR 0.18, 95% CI 0.06-0.54; p=0.002) and diabetes (adjusted OR 0.34, 95% CI 0.12-0.97; p=0.044). These associations were absent for SCC. CONCLUSION: This study exemplifies the prognostic value of a patient-derived organoid-based biomarker within a clinical setting, which is especially important for people carrying rare CFTR mutations with unclear clinical consequences.


Subject(s)
Cystic Fibrosis , Exocrine Pancreatic Insufficiency , Biomarkers , Colforsin/pharmacology , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Progression , Exocrine Pancreatic Insufficiency/complications , Humans , Mutation , Organoids
4.
EMBO J ; 38(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30643021

ABSTRACT

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Organ Culture Techniques/methods , Organoids/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory System/pathology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory System/metabolism , Xenograft Model Antitumor Assays
5.
J Cyst Fibros ; 17(3): 316-324, 2018 05.
Article in English | MEDLINE | ID: mdl-29544685

ABSTRACT

BACKGROUND: New functional assays using primary human intestinal adult stem cell cultures can be valuable tools to study epithelial defects in human diseases such as cystic fibrosis. METHODS: CFTR-mediated ion transport was measured in rectal organoid-derived monolayers grown from subjects with various CFTR mutations and compared to donor-matched intestinal current measurements (ICM) in rectal biopsies and forskolin-induced swelling of rectal organoids. RESULTS: Rectal organoid-derived monolayers were generated within four days. Ion transport measurements of CFTR function using these monolayers correlated with ICM and organoid swelling (r = 0.73 and 0.79 respectively). Culturing the monolayers under differentiation conditions enhanced the detection of mucus-secreting cells and was accompanied by reduced CFTR function. CONCLUSIONS: CFTR-dependent intestinal epithelial ion transport properties can be measured in rectal organoid-derived monolayers of subjects and correlate with donor-matched ICM and rectal organoid swelling.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells/metabolism , Ion Transport/physiology , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Models, Biological , Mutation , Organoids/physiology , Rectum
6.
Eur Respir J ; 48(3): 768-79, 2016 09.
Article in English | MEDLINE | ID: mdl-27471203

ABSTRACT

We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified ß2-adrenergic receptor agonists as the most potent inducers of CFTR function.ß2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled ß2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Administration, Oral , Albuterol/administration & dosage , Biological Assay , Bronchi/pathology , Cell Line , Cells, Cultured , Chlorides/chemistry , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Evaluation, Preclinical , Epithelial Cells/metabolism , Epithelium/metabolism , Humans , Mutation , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Organoids , Pilot Projects , Respiratory System/metabolism , Signal Transduction
7.
J Med Chem ; 59(14): 6968-72, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27347611

ABSTRACT

Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC50 values over a wide range of potencies (15 pM to 9 mM). The results indicate for the first time that an organoid-based swelling assay is a useful preclinical method to evaluate inhibitor potencies of drugs that target pathogen-derived toxins.


Subject(s)
Antitoxins/pharmacology , Cholera Toxin/antagonists & inhibitors , Intestines/drug effects , Organoids/drug effects , Antitoxins/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...