Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 341: 199308, 2024 03.
Article in English | MEDLINE | ID: mdl-38171391

ABSTRACT

A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.


Subject(s)
Hepatitis C , Vaccines , Humans , Hepacivirus , Antibodies, Neutralizing , Antibody Formation , Neutralization Tests , Viral Envelope Proteins , Glycoproteins , Epitopes , Hepatitis C Antibodies , Antibodies, Monoclonal
2.
Nat Commun ; 14(1): 4036, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419906

ABSTRACT

An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Viral Envelope Proteins , Hepatitis C/prevention & control , Recombinant Proteins
3.
Nat Commun ; 13(1): 7271, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434005

ABSTRACT

Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.


Subject(s)
Hepatitis C , Nanoparticles , Vaccines , Humans , Hepacivirus/genetics , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Viral Envelope Proteins , Hepatitis C Antibodies , Glycoproteins
4.
Science ; 378(6617): 263-269, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264808

ABSTRACT

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Subject(s)
Hepacivirus , Hepatitis C , Viral Envelope Proteins , Humans , Antiviral Agents/chemistry , Broadly Neutralizing Antibodies , Cryoelectron Microscopy , Hepacivirus/chemistry , Hepacivirus/immunology , Hepatitis C/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Protein Multimerization , Viral Hepatitis Vaccines/chemistry , Viral Hepatitis Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...