Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 362: 142648, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906189

ABSTRACT

Four different end-of-life options for disposable bioplastic cups were investigated and compared based on their environmental implications. Two products with distinct polymeric composition were tested simulating the following scenarios at laboratory scale: i) industrial composting (180 days at 58 °C); ii) anaerobic digestion followed by industrial composting (45 days at 55 °C and 180 days at 58 °C); iii) anaerobic digestion followed by direct digestate use on soil for agricultural purposes (45 days at 55 °C and 180 days at 25 °C); iv) uncontrolled release into a soil environment (180 days at 25 °C). Ecotoxicity tests were run at the end of each experiment to investigate the effects of the materials on three main groups of terrestrial model organisms: plants, earthworms and nitrifying bacteria. Complete biodegradation of the cups was observed in 180 days in the scenarios involving composting environment. A low degree of biodegradation (22.9 ± 4.5%) of the digestates in soil was observed, warning for a potential micro-bioplastics discharge into the environment. No degradation was observed for the cups in soil during the same testing period. Ecotoxicity tests revealed a negative effect on plants biomass growth across all samples, which was 17-30% lower compared to the blank sample. The experimental campaign highlighted the need for a systematic assessment of controlled treatment of bioplastics, as well as the need for a harmonized legislative framework.

2.
Chemosphere ; 308(Pt 1): 136174, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36030944

ABSTRACT

Despite having been widely investigated, dark fermentative H2 production from organic residues is still limited by process-related issues which may hamper the perspectives of full-scale process implementation. Such constraints are mainly due to the process complexity, which is largely affected by multiple and often mutually interacting factors. In the present work, the results of continuous fermentative H2 production experiments using synthetic cheese whey as the input substrate were used to gain detailed knowledge of the process features and identify suitable and critical operating conditions. Specifically, innovative process interpretation involved a combination of analytical characterization of the fermentation broth, mass balance calculations and statistical methods (correlation and principal component analyses) to derive systematic considerations for process characterization and scale-up. The metabolic products mainly included acetate and butyrate, which however were likely to derive (in different proportions depending on the operating conditions) from both hydrogenogenic and competing pathways. For some tests, lactate and succinate were also found to have been formed. It was observed that the main features of the process (H2 yield and rate, stability condition) were correlated with the operational and analytical parameters. The first three principal components identified by the statistical analysis were able to account for: 1) the effect of retention time and total metabolites produced; 2) biogas (H2 and CO2) generation, butyrate production and stability condition; and 3) organic loading rate and propionate production. The results suggested that the main features of hydrogenogenic fermentation can be described by a reduced set of factors that may be usefully adopted for both process monitoring and prediction purposes.


Subject(s)
Cheese , Whey , Acetates/metabolism , Biofuels , Bioreactors , Butyrates/metabolism , Carbon Dioxide/metabolism , Fermentation , Hydrogen/metabolism , Lactates/metabolism , Propionates/metabolism , Succinates/metabolism , Whey/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...