Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1094089, 2023.
Article in English | MEDLINE | ID: mdl-36923353

ABSTRACT

Background: As the coronavirus disease 2019 (COVID-19) pandemic progressed, especially with the emergence of the Omicron variant, the proportion of infected children and adolescents increased significantly. Some treatment such as Chinese herbal medicine has been administered for COVID-19 as a therapeutic option. Jin-Zhen Oral Liquid is widely used for pediatric acute bronchitis, while the efficacy and safety in the treatment of pediatric COVID-19 are unclear. Methods: We conducted a randomized controlled, open-label, multicenter, non-inferiority clinical study involving hospitalized children with mild to moderate COVID-19. Children eligible for enrollment were randomly assigned in a 1:1 ratio to Jin-Zhen Oral Liquid (the treatment group) and Jinhua Qinggan Granules (the positive control group) and received the respective agent for 14 days, followed by a 14-day follow-up after discontinuation of the treatment. The primary efficacy endpoint was the time to first negative viral testing. The secondary endpoints were the time and rate of major symptoms disappearance, duration of hospitalization, and the proportion of symptoms changed from asymptomatic or mild to moderate or severe/critical illness. In addition, the safety end points of any adverse events were observed. Results: A total of 240 child patients were assigned randomly into the Jin-Zhen Oral Liquid (117 patients) and Jinhua Qinggan Granules (123 patients) groups. There was no significant difference of the baselines in terms of the clinical characteristics and initial symptoms between the two groups. After 14-day administration, the time to first negative viral testing in the Jin-Zhen group (median 6.0 days, 95% CI 5.0-6.0) was significantly shorter compared with the positive control Jinhua Qinggan Granules group (median 7.0 days, 95% CI 7.0-8.0). The time and rate of major clinical symptoms disappearance were comparable to the positive control. The symptom disappearance time of pharyngalgia and hospitalization duration were significantly shortened in the Jin-zhen Oral Liquid group. No participants in either group experienced post-treatment exacerbation to severe or critical illness. No adverse events were observed in the Jin-Zhen Oral Liquid treatment group (0.0%) while 1 patient with adverse events occurred in the positive control Jinhua Qinggan granules group (0.8%). No serious adverse events were observed during the study period in both groups. Conclusion: Jin-Zhen Oral Liquid is safe and effective in the treatment of mild to medium COVID-19 in children. It is non-inferior to Jinhua Qinggan granules in shortening the time to first negative viral testing, the time and rate of major clinical symptoms disappearance, and the hospitalization duration. The results suggest that Jin-Zhen Oral Liquid can be a recommended drug for treatment of pediatric COVID-19 patients.

2.
Prog Neurobiol ; 222: 102404, 2023 03.
Article in English | MEDLINE | ID: mdl-36642095

ABSTRACT

AMPAR-lacking silent synapses are prevailed and essential for synaptic refinement and synaptic plasticity in developing brains. In mature brain, they are sparse but could be induced under several pathological conditions. How they are regulated molecularly is far from clear. miR-34a is a highly conserved and brain-enriched microRNA with age-dependent upregulated expression profile. Its neuronal function in mature brain remains to be revealed. Here by analyzing synaptic properties of the heterozygous miR-34a knock out mice (34a_ht), we have discovered that mature but not juvenile 34a_ht mice have more silent synapses in the hippocampus accompanied with enhanced synaptic NMDAR but not AMPAR function and increased spine density. As a result, 34a_ht mice display enhanced long-term potentiation (LTP) in the Schaffer collateral synapses and better spatial learning and memory. We further found that Creb1 is a direct target of miR-34a, whose upregulation and activation may mediate the silent synapse increment in 34a_ht mice. Hence, we reveal a novel physiological role of miR-34a in mature brains and provide a molecular mechanism underlying silent synapse regulation.


Subject(s)
MicroRNAs , Neuronal Plasticity , Mice , Animals , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Hippocampus/metabolism , Synapses/metabolism , MicroRNAs/metabolism , Mice, Knockout
3.
EMBO J ; 42(3): e111304, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36477886

ABSTRACT

Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.


Subject(s)
Neurons , Parvalbumins , Animals , Mice , Parvalbumins/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Synaptic Transmission , Sleep , Mammals
4.
Neuron ; 105(4): 621-629.e4, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31831331

ABSTRACT

A balance between synaptic excitation and inhibition (E/I balance) maintained within a narrow window is widely regarded to be crucial for cortical processing. In line with this idea, the E/I balance is reportedly comparable across neighboring neurons, behavioral states, and developmental stages and altered in many neurological disorders. Motivated by these ideas, we examined whether synaptic inhibition changes over the 24-h day to compensate for the well-documented sleep-dependent changes in synaptic excitation. We found that, in pyramidal cells of visual and prefrontal cortices and hippocampal CA1, synaptic inhibition also changes over the 24-h light/dark cycle but, surprisingly, in the opposite direction of synaptic excitation. Inhibition is upregulated in the visual cortex during the light phase in a sleep-dependent manner. In the visual cortex, these changes in the E/I balance occurred in feedback, but not feedforward, circuits. These observations open new and interesting questions on the function and regulation of the E/I balance.


Subject(s)
Circadian Rhythm/physiology , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/physiology , Nerve Net/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/cytology , Neural Inhibition/physiology , Organ Culture Techniques , Pyramidal Cells/physiology , Visual Cortex/cytology , Visual Pathways/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...