Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679862

ABSTRACT

Understanding the stabilization of nitrogen heterocycles is critical in the field of energetic materials and calls for innovative knowledge of nitrogen aromatics. Herewith, we report for the first time that nitrogen lone pair electron (NLPE) delocalization in five-membered nitrogen heterocycles creates a second σ-aromaticity in addition to the prototypical π-aromaticity. The NLPE delocalization and the attendant dual-aromaticity are enhanced as more carbon atoms in the ring are substituted by unsaturated nitrogen atoms. The presence of adjacent nitrogen atoms in the ring can enhance the aromaticity of the nitrogen heterocycles and improve in-crystal intermolecular binding strength but will decrease the firmness of the individual molecular architecture. Notably, such σ-aromaticity is not present in six-membered nitrogen heterocycles, probably due to the longer bonds and broader regions of their rings; therefore, six-membered heterocycles present overall lower aromaticity than five-membered heterocycles. This work brings new knowledge to nitrogen aromatics and is expected to inspire broad interest in the chemistry community.


Subject(s)
Explosive Agents/chemistry , Heterocyclic Compounds/chemistry , Nitrogen/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure
2.
iScience ; 23(3): 100944, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32163898

ABSTRACT

Performance-stability contradiction of high-energy-density materials (HEDMs) is a long-standing puzzle in the field of chemistry and material science. Bridging the gap that exists between detonation performance of new HEDMs and their stability remains a formidable challenge. Achieving optimal balance between the two contradictory factors is of a significant demand for deep-well oil and gas drilling, space exploration, and other civil and defense applications. Herein, supercomputers and latest quantitative computational strategies were employed and high-throughput quantum calculations were conducted for 67 reported HEDMs. Based on statistical analysis of large amounts of physico-chemical data, in-crystal interspecies interactions were identified to be the one that provokes the performance-stability contradiction of HEDMs. To design new HEDMs with both good detonation performance and high stability, the proposed systematic and comprehensive strategies must be satisfied, which could promote the development of crystal engineering of HEDMs to an era of theory-guided rational design of materials.

3.
J Mol Model ; 23(10): 275, 2017 Sep 10.
Article in English | MEDLINE | ID: mdl-28891015

ABSTRACT

In this work, we report the structure, mechanical properties, and vibrational spectra of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), an energetic molecular crystal, with a first-principles method based on density functional theory (DFT) using the recentely developped HASEM package. The elastic constants, acoustic velocity, and parameters of equations of state were calculated, and the predicted ordering of stiffness constants is C 33 (38.5 GPa) > C 11 (24.0 GPa) > C 22 (17.7 GPa). We also investigated the structure and equation of state of LLM-105 under hydrostatic pressure up to 100 GPa. The predicted structures are in good agreement with experimental results available from ambient pressure to 20 GPa. Under compressions, the LLM-105 crystal exhibits anisotropic compressibility, with a highly incompressible response along the a-axis and c-axis. It is worth noting that there is a sudden change in the lattice parameters and change rate of volume at ~30 GPa. Based on the intermolecular interaction analysis and vibrational spectra, a phase transition at the hydrostatic pressure of ~30 GPa is predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...