Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 10(1): 301, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914560

ABSTRACT

Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.

2.
Dev Cell ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38776924

ABSTRACT

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.

3.
Cell Death Dis ; 14(12): 836, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38104141

ABSTRACT

Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.


Subject(s)
Neoplasms , Pyroptosis , Humans , Pyroptosis/physiology , Gasdermins , Cell Line, Tumor , Apoptosis/physiology , Inflammation , Caspase 3/metabolism , Neoplasms/therapy
4.
Sci Adv ; 9(48): eadi7375, 2023 12.
Article in English | MEDLINE | ID: mdl-38019913

ABSTRACT

Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.


Subject(s)
Erythropoiesis , Myelodysplastic Syndromes , Animals , Humans , Mice , Erythropoiesis/genetics , Myelodysplastic Syndromes/genetics , Nerve Tissue Proteins/genetics , Prognosis , Receptors, Immunologic/genetics , Roundabout Proteins
5.
J Cancer Res Ther ; 19(4): 1031-1039, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37675733

ABSTRACT

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse reaction to chemotherapeutics, which seriously affects the outcome of chemotherapy and patients' quality of life. Although it is commonly seen, it lacks effective treatment. Our previous study found that ozone could alleviate neuropathic pain. Damage-associated molecular patterns (DAMPs) or Toll-like receptor 4 (TLR4) or tissue factor (TF)-mediated neuroinflammation and microcirculation disturbance is the main reason for CIPN. Suppressors of cytokine signaling (SOCS) 3 is an endogenous negative feedback regulator of inflammation via TLR4 inhibition. Materials and Methods: Oxaliplatin (L-OHP) was used to establish mice's CIPN model. Nociceptive responses were assessed by observing the ICR mice's incidence of foot regression in mechanical indentation response experiments. Cell signaling assays were performed by Western blotting and immunohistochemistry. The mouse leukemia cells of monocyte-macrophage line RAW 264.7 were cultured to investigate the effects of ozone administration on macrophage. Results: Ozone decreased the expression of TF in the blood and sciatic nerve. It upregulated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-SOCS3 axis to relieve CIPN and inhibit TF expression in vivo. SOCS3 expression was induced by ozone to inhibit the p38/TF signaling in RAW 246.7 cells. Ozone also prevented L-OHP-induced sciatic nerve demyelination. Microglia activation was inhibited, and c-Fos and calcitonin gene-related peptide (CGRP) expression was decreased in the spinal dorsal horn via ozone. Conclusions: In this study, we demonstrated that ozone could alleviate CIPN by upregulating the AMPK-SOCS3 axis to inhibit TF expression, which is a potential treatment for CIPN.


Subject(s)
Antineoplastic Agents , Neuralgia , Mice , Animals , Mice, Inbred ICR , AMP-Activated Protein Kinases/genetics , Toll-Like Receptor 4 , Quality of Life , Suppressor of Cytokine Signaling Proteins
6.
Blood ; 142(10): 903-917, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37319434

ABSTRACT

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Subject(s)
Angiopoietin-Like Protein 7 , Inhibitor of Differentiation Protein 1 , Leukemia, Myeloid, Acute , Animals , Mice , Angiopoietin-Like Protein 7/genetics , Angiopoietin-Like Protein 7/metabolism , Bone Marrow/metabolism , Disease Models, Animal , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Humans , Inhibitor of Differentiation Protein 1/metabolism
7.
Leukemia ; 37(1): 164-177, 2023 01.
Article in English | MEDLINE | ID: mdl-36352191

ABSTRACT

The patients with relapsed and refractory diffuse large B-cell lymphoma (DLBCL) have poor prognosis, and a novel and effective therapeutic strategy for these patients is urgently needed. Although ubiquitin-specific protease 1 (USP1) plays a key role in cancer, the carcinogenic effect of USP1 in B-cell lymphoma remains elusive. Here we found that USP1 is highly expressed in DLBCL patients, and high expression of USP1 predicts poor prognosis. Knocking down USP1 or a specific inhibitor of USP1, pimozide, induced cell growth inhibition, cell cycle arrest and autophagy in DLBCL cells. Targeting USP1 by shRNA or pimozide significantly reduced tumor burden of a mouse model established with engraftment of rituximab/chemotherapy resistant DLBCL cells. Pimozide significantly retarded the growth of lymphoma in a DLBCL patient-derived xenograft (PDX) model. USP1 directly interacted with MAX, a MYC binding protein, and maintained the stability of MAX through deubiquitination, which promoted the transcription of MYC target genes. Moreover, pimozide showed a synergetic effect with etoposide, a chemotherapy drug, in cell and mouse models of rituximab/chemotherapy resistant DLBCL. Our study highlights the critical role of USP1 in the rituximab/chemotherapy resistance of DLBCL through deubiquitylating MAX, and provides a novel therapeutic strategy for rituximab/chemotherapy resistant DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Animals , Mice , Humans , Rituximab/therapeutic use , Pimozide/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Non-Hodgkin/drug therapy , Ubiquitin-Specific Proteases/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
8.
Brain Behav Immun ; 107: 76-86, 2023 01.
Article in English | MEDLINE | ID: mdl-36198341

ABSTRACT

Current treatments for chronic pain are unsatisfactory, therefore, new therapeutics are urgently needed. Our previous study indicated that KATP channel openers have analgesic effects, but the underlying mechanism has not been elucidated. We speculated that KATP channel openers might increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Postoperative pain was induced by plantar incision to establish a chronic pain model. Growth arrest-specific 6 (Gas6)-/- and Axl-/- mice were used for signaling studies. The microglia cell line BV-2 was cultured for the in vitro experiments. The KATP channel opener significantly attenuated incision-induced mechanical allodynia in mice associated with the upregulated expression of SOCS3. Opening KATP channels induced the expression of SOCS3 in the Gas6/Axl signaling pathway in microglia, inhibited incision-induced mechanical allodynia by activating the Gas6/Axl-SOCS3 signaling pathway, and induced inflammatory tolerance to relieve neuroinflammation and postoperative pain. We demonstrated that opening of the KATP channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relieve chronic pain. We explored a new target for anti-inflammatory and analgesic effects by regulating the innate immune system and provided a theoretical basis for clinical preemptive analgesia.


Subject(s)
Chronic Pain , Animals , Mice , Chronic Pain/prevention & control , Pain, Postoperative , Adenosine Triphosphate
9.
Cancer Immunol Res ; 10(12): 1542-1558, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36255412

ABSTRACT

Oxaliplatin is an antineoplastic agent frequently used in the treatment of gastrointestinal tumors. However, it causes dose-limiting sensorimotor neuropathy, referred to as oxaliplatin-induced peripheral neuropathy (OIPN), for which there is no effective treatment. Here, we report that the elevation of neutrophil extracellular traps (NET) is a pathologic change common to both cancer patients treated with oxaliplatin and a murine model of OIPN. Mechanistically, we found that NETs trigger NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and the subsequent release of IL18 by macrophages, resulting in mechanical hyperalgesia. In NLRP3-deficient mice, the mechanical hyperalgesia characteristic of OIPN in our model was reduced. In addition, in the murine model, treatment with the IL18 decoy receptor IL18BP prevented the development of OIPN. We further showed that eicosapentaenoic acid (EPA) reduced NET formation by suppressing the LPS-TLR4-JNK pathway and thereby abolished NLRP3 inflammasome activation and the subsequent secretion of IL18, which markedly prevented oxaliplatin-induced mechanical hyperalgesia in mice. These results identify a role for NET-triggered NLRP3 activation and IL18 release in the development of OIPN and suggest that utilizing IL18BP and EPA could be effective treatments for OIPN.


Subject(s)
Extracellular Traps , Peripheral Nervous System Diseases , Animals , Mice , Disease Models, Animal , Extracellular Traps/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Inflammasomes/metabolism , Interleukin-18/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism
10.
Cell Res ; 32(12): 1105-1123, 2022 12.
Article in English | MEDLINE | ID: mdl-36302855

ABSTRACT

Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Carcinogenesis , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Histone Deacetylases , Leukemia, Myeloid, Acute/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Blood ; 135(25): 2271-2285, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32202636

ABSTRACT

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Subject(s)
Anemia, Refractory, with Excess of Blasts/pathology , Calgranulin B/physiology , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/physiology , Leukemia, Myeloid, Acute/etiology , Anemia, Refractory, with Excess of Blasts/genetics , Anemia, Refractory, with Excess of Blasts/metabolism , Animals , Calgranulin B/biosynthesis , Calgranulin B/genetics , Cell Transformation, Neoplastic , Cells, Cultured , Decitabine/pharmacology , Down-Regulation , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Histone Code/drug effects , Histone-Lysine N-Methyltransferase/biosynthesis , Histone-Lysine N-Methyltransferase/genetics , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myelodysplastic Syndromes/pathology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Prognosis , Recombinant Proteins/therapeutic use , Time Factors , Tissue Array Analysis , Transcriptome
12.
Acta Biomater ; 85: 131-141, 2019 02.
Article in English | MEDLINE | ID: mdl-30553012

ABSTRACT

Cell-seeded scaffolds are a common route of cell transplantation for bladder repair and reconstruction. However, when cell suspensions are harvested, proteolytic enzymes often cause extracellular matrix damage and loss of intercellular junctions. To overcome this problem, we developed a bioengineered three-dimensional bladder patch comprising porous scaffolds and multilayered adipose-derived stem cell (ASC) sheets, and evaluated its feasibility for bladder regeneration in a rat model. Adipose-derived stem cells (ASCs) were labeled with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles. ASC patches were constructed using multilayered USPIO-labeled ASC sheets and porous polyglycolic acid scaffolds. To monitor the distribution and localization of bioengineered bladder patches in live animals, magnetic resonance imaging (MRI) was performed 2 weeks, 4 weeks and 8 weeks after transplantation. The bladder regenerative potential of ASC patches was further evaluated by urodynamic and histological analysis. Scanning electron microscopy indicated that cell sheets adhered tightly to the scaffold. MRI showed hypointense signals that lasted up to 8 weeks at the site of USPIO-labeled ASC sheet transplants. Immunofluorescence demonstrated that these tissue-engineered bladder patches promoted regeneration of urothelium, smooth muscle, neural cells and blood vessels. Urodynamic testing revealed that the ASC patch restored bladder function with augmented capacity. The USPIO-labeled ASC patch provides a promising perspective on image-guided tissue engineering and holds great promise as a safe and effective therapeutic strategy for bladder regeneration. STATEMENT OF SIGNIFICANCE: Adipose-derived stem cell (ASC) sheets avoid enzymatic dissociation and preserve the cell-to-cell interactions and extracellular matrix (ECM) proteins, which exhibit great potential for tissue regeneration. In this study, we developed a bioengineered three-dimensional bladder patch comprising porous scaffolds and multilayered ASC sheets, and evaluated its feasibility for bladder regeneration in a rat model. Tissue-engineered bladder patches restored bladder function and promoted regeneration of urothelium, smooth muscle, neural cells and blood vessels. Moreover, ultrasmall super-paramagnetic iron oxide (USPIO)-labeled bladder patches can be dynamically monitored in vivo by noninvasive MRI for long periods of time. Therefore, The USPIO-labeled bladder patch provides a promising image-guided therapeutic strategy for bladder regeneration.


Subject(s)
Adipose Tissue/cytology , Bioengineering/methods , Regeneration , Stem Cells/cytology , Urinary Bladder/physiology , Animals , Apoptosis , Cell Survival , Dextrans/ultrastructure , Female , Magnetic Resonance Imaging , Magnetite Nanoparticles/ultrastructure , Rats, Sprague-Dawley , Staining and Labeling , Stem Cells/ultrastructure , Tissue Engineering , Urodynamics
13.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 24(1): 42-5, 2008 Jan.
Article in Chinese | MEDLINE | ID: mdl-18437984

ABSTRACT

OBJECTIVE: To explore the possibility of creating a rat new scar model by inserting gelatin sponge into rat excisional wounds. METHODS: Two full-thickness wounds were created in each of total 49 SD rats. In the Experimental group (n = 19), a regular incisional wound (1 cm) was created on the left side, and an excisional wound of 1.0 cm x 0.2 cm was created on the right side with a gelatin sponge inserted. In control 1 group (n = 15), an excisional wound with sponge insertion was created on both sides of rats. In control 2 group (n = 15), two excisional wounds were created on both sides, and only one side wounds were inserted with a sponge. Animals were sacrificed at various time points for different examinations. RESULTS: The wound/scar width increased 4 - 11 times in inserted wounds than in regular incisional wounds (P < 0.01), with an obvious delay of epithelialization. No difference in wound/scar width was found in both sides of wounds of control 1 group at various locations. In contrast to the linear scar of sponge-inserted wounds, contracted and irregular scar was found in non-inserted wounds of control 2 group. CONCLUSIONS: Gelatin sponge insertion can create a thick linear scar in rat wounds, and thus provides a new model for scar research.


Subject(s)
Cicatrix , Dermatologic Surgical Procedures , Disease Models, Animal , Gelatin Sponge, Absorbable , Animals , Cicatrix/pathology , Male , Rats , Rats, Sprague-Dawley , Skin/pathology , Suture Techniques , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...