Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
PLoS One ; 12(10): e0186905, 2017.
Article in English | MEDLINE | ID: mdl-29073278

ABSTRACT

Stand density regulation is an important measure of plantation forest management, and phosphorus (P) is often the limiting factor of tree productivity, especially in the subtropics and tropics. However, the stand density influence on ecosystem P cycling is unclear in Chinese fir (Cunninghamia lanceolata) plantations of subtropical China. We collected rhizosphere and bulk soils, leaves and twigs with different ages and roots with different orders to measure P and nitrogen (N) variables in Chinese fir plantations with low density (LDCF) and high density (HDCF) at Fujian and Hunan provinces of subtropical China. Rhizosphere soil labile P, slow P, occluded P and extractable P were higher in LDCF than HDCF at two sites. Meanwhile, P and N concentrations of 1-year-old leaves and twigs were higher in LDCF than HDCF and leaf N/P ratio generally increased with increasing leaf age at two sites. Rhizosphere vs. bulk soil labile P and occluded P were greater in LDCF than HDCF at Fujian. Nitrogen resorption efficiencies (NRE) of leaves and twigs were higher in LDCF than HDCF at Fujian, while their P resorption efficiencies (PRE) were not different between two densities at two sites. The average NRE of leaves (41.7%) and twigs (65.6%) were lower than the corresponding PRE (67.8% and 78.0%, respectively). Our results suggest that reducing stem density in Chinese fir plantations might be helpful to increase soil active P supplies and meet tree nutrient requirements.


Subject(s)
Cunninghamia/chemistry , Forests , Phosphorus/analysis , Soil/chemistry , Tropical Climate , China , Nitrogen/analysis , Plant Cells
2.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1309-1316, 2017 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-29741329

ABSTRACT

A 25-year-old tea plantation in a typical red soil region was selected for an in situ simulated acid rain experiment treated by pH 4.5, 3.5, 2.5 and water (control, CK). Roots with different functions, leaves and twigs with different ages were collected to measure nitrogen (N) and phosphorus (P) contents in the third year after simulated acid rain treatment. The N/P and acid rain sensitivity coefficient of tea plant organs were also calculated. The results indicated that with the increase of acid rain intensity, the soil pH, NO3--N and available P decreased, while the absorption root N content increased. Compared with the control, the N content in absorption root was increased by 32.9% under the treatment of pH 2.5. The P content in storage root significantly decreased with enhanced acid rain intensity, and the acid rain treatment significantly enhanced N/P of absorption root. Young and mature leaf N, P contents were not sensitive to different intensities of acid rain, but the mature leaf N/P was significantly increased under pH 3.5 treatment compared with the control. The effects of acid rain treatments differed with tea twig ages. Compared with the control, low intensity acid treatment (pH 4.5) significantly increased young twig N content and N/P, while no signi-ficant differences in old twig N content and N/P were observed among four acid rain treatments. Acid rain sensitivity coefficients of absorption root, young leaf and twig N contents were higher than that of storage root, old leaf and twig, respectively. And the storage root and leaf P had higher acid rain sensitivity coefficient than other tea organs. In sum, tea organs N content was sensitive to acid rain treatment, and moderate acid rain could increase young organ N content and N/P, and change the cycle and balance of N and P in tea plantation.


Subject(s)
Acid Rain , Nitrogen , Phosphorus , Soil , China , Plant Leaves , Rain , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...