Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 13(7): e12449, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001708

ABSTRACT

Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.


Subject(s)
AMP-Activated Protein Kinases , Extracellular Vesicles , Glycolysis , Neoplasms , Protein Biosynthesis , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Extracellular Vesicles/metabolism , Neoplasms/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Cell Line, Tumor , Tumor Microenvironment , Human Umbilical Vein Endothelial Cells/metabolism
2.
Radiother Oncol ; 190: 109968, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898438

ABSTRACT

BACKGROUND AND PURPOSE: Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS: GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS: The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION: GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neoplasms , Humans , Animals , Mice , Hypoxia/metabolism , Cell Hypoxia , Extracellular Vesicles/metabolism , Microtubule-Associated Proteins , Adaptor Proteins, Signal Transducing/metabolism
3.
Autophagy ; 18(8): 1898-1914, 2022 08.
Article in English | MEDLINE | ID: mdl-34904929

ABSTRACT

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy. Paradoxically, in several cancer types, mutations or loss of essential autophagy genes have been reported that are associated with earlier onset of tumor growth. However, to our knowledge, the phenotypic and therapeutic consequences of autophagy deficiency have remained unexplored. In this study, we determined autophagy-defects in head and neck squamous cell carcinoma (HNSCC) and observed that expression of ATG12 (autophagy related 12) was lost in 25%-40% of HNSCC. In line, ATG12 loss is associated with absence of hypoxia, as determined by pimonidazole immunohistochemistry. Hence, ATG12 loss is associated with improved prognosis after therapy in two independent HNSCC cohorts and 7 additional cancer types. In vivo, ATG12 targeting resulted in decreased hypoxia tolerance, increased necrosis and sensitivity of the tumor to therapy, but in vitro ATG12-deficient cells displayed enhanced survival in nutrient-rich culture medium. Besides oxygen, delivery of glucose was hampered in hypoxic regions in vivo, which increases the reliance of cells on other carbon sources (e.g., L-glutamine). We observed decreased intracellular L-glutamine levels in ATG12-deficient cells during hypoxia and increased cell killing after L-glutamine depletion, indicating a central role for ATG12 in maintaining L-glutamine homeostasis. Our results demonstrate that ATG12low tumors represent a phenotypically different subtype that, due to the lowered hypoxia tolerance, display a favorable outcome after therapy.Abbreviations: ARCON:accelerated radiotherapy with carbogen and nicotinamide; ATG: autophagy related; BrdUrd: bromodeoxyuridine; CA9/CAIX: carbonic anhydrase 9; HIF1A/HIF1α: hypoxia inducible factor 1 subunit alpha; HNSCC: head and neck squamous cell carcinoma; HPV: human papilloma virus; HR: hazard ratio; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; mRNA: messenger ribonucleic acid; PCR: polymerase chain reaction; SLC2A1/GLUT1: solute carrier family 2 member 1; TCGA: the Cancer Genome Atlas; TME: tumor microenvironment; UTR: untranslated region; VEGF: vascular endothelial growth factor.


Subject(s)
Autophagy-Related Protein 12 , Glutamine , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Animals , Autophagy/genetics , Autophagy-Related Protein 12/genetics , Fibroblasts/metabolism , Glutamine/metabolism , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , Humans , Mice , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Hypoxia , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism
4.
J Extracell Vesicles ; 10(14): e12166, 2021 12.
Article in English | MEDLINE | ID: mdl-34859607

ABSTRACT

Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Proteins/metabolism , Cell Hypoxia/physiology , Extracellular Vesicles/metabolism , Microtubule-Associated Proteins/metabolism , Humans
5.
J Extracell Vesicles ; 10(5): e12071, 2021 03.
Article in English | MEDLINE | ID: mdl-33732416

ABSTRACT

Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist-induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract.


Subject(s)
Extracellular Vesicles/metabolism , MAP Kinase Signaling System , Milk, Human/cytology , Mouth Mucosa/physiology , Adult , Cell Line , Extracellular Vesicles/immunology , Female , Humans , Mouth Mucosa/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
FASEB J ; 34(5): 6703-6717, 2020 05.
Article in English | MEDLINE | ID: mdl-32202346

ABSTRACT

Iron homeostasis is essential for mitochondrial function, and iron deficiency has been associated with skeletal muscle weakness and decreased exercise capacity in patients with different chronic disorders. We hypothesized that iron deficiency-induced loss of skeletal muscle mitochondria is caused by increased mitochondrial clearance. To study this, C2C12 myotubes were subjected to the iron chelator deferiprone. Mitochondrial parameters and key constituents of mitophagy pathways were studied in presence or absence of pharmacological autophagy inhibition or knockdown of mitophagy-related proteins. Furthermore, it was explored if mitochondria were present in extracellular vesicles (EV). Iron chelation resulted in an increase in BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and BNIP3-like gene and protein levels, and the appearance of mitochondria encapsulated by lysosome-like vesicular structures in myotubes. Moreover, mitochondria were secreted via EV. These changes were associated with cellular mitochondrial impairments. These impairments were unaltered by autophagy inhibition, knockdown of mitophagy-related proteins BNIP3 and BNIP3L, or knockdown of their upstream regulator hypoxia-inducible factor 1 alpha. In conclusion, mitophagy is not essential for development of iron deficiency-induced reductions in mitochondrial proteins or respiratory capacity. The secretion of mitochondria-containing EV could present an additional pathway via which mitochondria can be cleared from iron chelation-exposed myotubes.


Subject(s)
Iron Deficiencies , Mitochondria, Muscle/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mitophagy , Muscle, Skeletal/pathology , Secretory Vesicles/metabolism , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/genetics , Muscle, Skeletal/metabolism , Reactive Oxygen Species
7.
Cancers (Basel) ; 11(2)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30699970

ABSTRACT

Tumour hypoxia is a common feature of solid tumours that contributes to poor prognosis after treatment. This is mainly due to increased resistance of hypoxic cells to radio- and chemotherapy and the association of hypoxic cells with increased metastasis development. It is therefore not surprising that an increased hypoxic tumour fraction is associated with poor patient survival. The extent of hypoxia within a tumour is influenced by the tolerance of individual tumor cells to hypoxia, a feature that differs considerably between tumors. High numbers of hypoxic cells may, therefore, be a direct consequence of enhanced cellular capability inactivation of hypoxia tolerance mechanisms. These include HIF-1α signaling, the unfolded protein response (UPR) and autophagy to prevent hypoxia-induced cell death. Recent evidence shows hypoxia tolerance can be modulated by distant cells that have experienced episodes of hypoxia and is mediated by the systemic release of factors, such as extracellular vesicles (EV). In this review, the evidence for transfer of a hypoxia tolerance phenotype between tumour cells via EV is discussed. In particular, proteins, mRNA and microRNA enriched in EV, derived from hypoxic cells, that impact HIF-1α-, UPR-, angiogenesis- and autophagy signalling cascades are listed.

8.
Eur J Immunol ; 48(10): 1621-1631, 2018 10.
Article in English | MEDLINE | ID: mdl-30011060

ABSTRACT

CD4 T cells play a central role as helper cells in adaptive immunity. Presentation of exogenous antigens in MHC class II by professional antigen-presenting cells is a crucial step in induction of specific CD4 T cells in adaptive immune responses. For efficient induction of immunity against intracellular threats such as viruses or malignant transformations, antigens from HLA class II-negative infected or transformed cells need to be transferred to surrounding antigen-presenting cells to allow efficient priming of naive CD4 T cells. Here we show indirect antigen presentation for a subset of natural HLA class II ligands that are created by genetic variants and demonstrated that (neo)antigens can be transferred between cells by extracellular vesicles. Intercellular transfer by extracellular vesicles was not dependent on the T-cell epitope, but rather on characteristics of the full-length protein. This mechanism of (neo)antigen transfer from HLA class II-negative cells to surrounding antigen-presenting cells may play a crucial role in induction of anti-tumor immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Extracellular Vesicles/metabolism , Genetic Variation , Histocompatibility Antigens Class II/genetics , Neoplasms/immunology , Antigen Presentation , Antigen-Presenting Cells/immunology , Extracellular Vesicles/immunology , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/immunology , HeLa Cells , Humans , Ligands , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/immunology , T-Lymphocytes, Helper-Inducer/immunology
9.
BMC Immunol ; 19(1): 8, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29433450

ABSTRACT

BACKGROUND: Besides their prominent role in the elimination of infected or malignantly transformed cells, natural killer (NK) cells serve as modulators of adaptive immune responses. Enhancing bidirectional crosstalk between NK cells and dendritic cells (DC) is considered a promising tool to potentiate cancer vaccines. We investigated to what extent direct sensing of viral and bacterial motifs by NK cells contributes to the response of inflammatory DC against the same pathogenic stimulus. RESULTS: We demonstrated that sensing of bacterial and viral PAMPs by NK cells contributes to DC cytokine production via NK cell-derived soluble factors. This enhancement of DC cytokine production was dependent on the pattern recognition receptor (PRR) agonist but also on the cytokine environment in which NK cells recognized the pathogen, indicating the importance of accessory cell activation for this mechanism. We showed in blocking experiments that NK cell-mediated amplification of DC cytokine secretion is dependent on NK cell-derived IFN-γ irrespective of the PRR that is sensed by the NK cell. CONCLUSIONS: These findings illustrate the importance of bidirectional interaction between different PRR-expressing immune cells, which can have implications on the selection of adjuvants for vaccination strategies.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Inflammation Mediators/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Monocytes/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/microbiology , Killer Cells, Natural/virology , Lymphocyte Activation/immunology , Monocytes/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism
10.
Autophagy ; 14(2): 283-295, 2018.
Article in English | MEDLINE | ID: mdl-29377763

ABSTRACT

Expression of EGFRvIII is frequently observed in glioblastoma and is associated with increased cellular proliferation, enhanced tolerance to metabolic stresses, accelerated tumor growth, therapy resistance and poor prognosis. We observed that expression of EGFRvIII elevates the activation of macroautophagy/autophagy during starvation and hypoxia and explored the underlying mechanism and consequence. Autophagy was inhibited (genetically or pharmacologically) and its consequence for tolerance to metabolic stress and its therapeutic potential in (EGFRvIII+) glioblastoma was assessed in cellular systems, (patient derived) tumor xenopgrafts and glioblastoma patients. Autophagy inhibition abrogated the enhanced proliferation and survival advantage of EGFRvIII+ cells during stress conditions, decreased tumor hypoxia and delayed tumor growth in EGFRvIII+ tumors. These effects can be attributed to the supporting role of autophagy in meeting the high metabolic demand of EGFRvIII+ cells. As hypoxic tumor cells greatly contribute to therapy resistance, autophagy inhibition revokes the radioresistant phenotype of EGFRvIII+ tumors in (patient derived) xenograft tumors. In line with these findings, retrospective analysis of glioblastoma patients indicated that chloroquine treatment improves survival of all glioblastoma patients, but patients with EGFRvIII+ glioblastoma benefited most. Our findings disclose the unique autophagy dependency of EGFRvIII+ glioblastoma as a therapeutic opportunity. Chloroquine treatment may therefore be considered as an additional treatment strategy for glioblastoma patients and can reverse the worse prognosis of patients with EGFRvIII+ glioblastoma.


Subject(s)
Autophagy/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , ErbB Receptors/biosynthesis , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , Autophagy/drug effects , Autophagy/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Male , Mice , Mice, Nude , Signal Transduction , Stress, Physiological , Xenograft Model Antitumor Assays
11.
Mol Cell Proteomics ; 15(11): 3412-3423, 2016 11.
Article in English | MEDLINE | ID: mdl-27601599

ABSTRACT

Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome.


Subject(s)
Extracellular Vesicles/metabolism , Milk, Human/cytology , Proteome/metabolism , Proteomics/methods , Adult , Chromatography, Liquid , Female , Humans , Milk Proteins/metabolism , Milk, Human/metabolism , Tandem Mass Spectrometry
12.
Article in English | MEDLINE | ID: mdl-25206958

ABSTRACT

Extracellular vesicles (EV) in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored) breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at -80°C or 4°C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system.

SELECTION OF CITATIONS
SEARCH DETAIL
...