Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31601632

ABSTRACT

Sound localization in the horizontal plane (azimuth) relies mainly on binaural difference cues in sound level and arrival time. Blocking one ear will perturb these cues, and may strongly affect azimuth performance of the listener. However, single-sided deaf listeners, as well as acutely single-sided plugged normal-hearing subjects, often use a combination of (ambiguous) monaural head-shadow cues, impoverished binaural level-difference cues, and (veridical, but limited) pinna- and head-related spectral cues to estimate source azimuth. To what extent listeners can adjust the relative contributions of these different cues is unknown, as the mechanisms underlying adaptive processes to acute monauralization are still unclear. By providing visual feedback during a brief training session with a high-pass (HP) filtered sound at a fixed sound level, we investigated the ability of listeners to adapt to their erroneous sound-localization percepts. We show that acutely plugged listeners rapidly adjusted the relative contributions of perceived sound level, and the spectral and distorted binaural cues, to improve their localization performance in azimuth also for different sound levels and locations than those experienced during training. Interestingly, our results also show that this acute cue-reweighting led to poorer localization performance in elevation, which was in line with the acoustic-spatial information provided during training. We conclude that the human auditory system rapidly readjusts the weighting of all relevant localization cues, to adequately respond to the demands of the current acoustic environment, even if the adjustments may hamper veridical localization performance in the real world.


Subject(s)
Adaptation, Physiological/physiology , Auditory Perception/physiology , Feedback, Sensory/physiology , Sound Localization/physiology , Visual Perception/physiology , Acoustic Stimulation , Adult , Female , Humans , Male , Middle Aged , Young Adult
2.
Sci Rep ; 9(1): 1642, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733476

ABSTRACT

The brain estimates the two-dimensional direction of sounds from the pressure-induced displacements of the eardrums. Accurate localization along the horizontal plane (azimuth angle) is enabled by binaural difference cues in timing and intensity. Localization along the vertical plane (elevation angle), including frontal and rear directions, relies on spectral cues made possible by the elevation dependent filtering in the idiosyncratic pinna cavities. However, the problem of extracting elevation from the sensory input is ill-posed, since the spectrum results from a convolution between source spectrum and the particular head-related transfer function (HRTF) associated with the source elevation, which are both unknown to the system. It is not clear how the auditory system deals with this problem, or which implicit assumptions it makes about source spectra. By varying the spectral contrast of broadband sounds around the 6-9 kHz band, which falls within the human pinna's most prominent elevation-related spectral notch, we here suggest that the auditory system performs a weighted spectral analysis across different frequency bands to estimate source elevation. We explain our results by a model, in which the auditory system weighs the different spectral bands, and compares the convolved weighted sensory spectrum with stored information about its own HRTFs, and spatial prior assumptions.


Subject(s)
Auditory Perception/physiology , Models, Biological , Adult , Female , Humans , Male , Nontherapeutic Human Experimentation , Reaction Time , Young Adult
3.
Sci Rep ; 8(1): 17933, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560940

ABSTRACT

How the human auditory system learns to map complex pinna-induced spectral-shape cues onto veridical estimates of sound-source elevation in the median plane is still unclear. Earlier studies demonstrated considerable sound-localisation plasticity after applying pinna moulds, and to altered vision. Several factors may contribute to auditory spatial learning, like visual or motor feedback, or updated priors. We here induced perceptual learning for sounds with degraded spectral content, having weak, but consistent, elevation-dependent cues, as demonstrated by low-gain stimulus-response relations. During training, we provided visual feedback for only six targets in the midsagittal plane, to which listeners gradually improved their response accuracy. Interestingly, listeners' performance also improved without visual feedback, albeit less strongly. Post-training results showed generalised improved response behaviour, also to non-trained locations and acoustic spectra, presented throughout the two-dimensional frontal hemifield. We argue that the auditory system learns to reweigh contributions from low-informative spectral bands to update its prior elevation estimates, and explain our results with a neuro-computational model.


Subject(s)
Feedback, Physiological/physiology , Sound Localization/physiology , Spatial Learning/physiology , Adult , Auditory Perception , Cues , Feedback, Sensory , Female , Humans , Male , Models, Biological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...